On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 111-124 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.
The object of the present paper is to study decomposable almost pseudo conharmonically symmetric manifolds.
Classification : 53B20, 53C15, 53C20
Keywords: almost pseudo conharmonically symmetric manifold; decomposable manifold; scalar curvature; torse-forming vector field
@article{AUPO_2012_51_1_a8,
     author = {Yilmaz, H\"ulya Ba\u{g}datl{\i}},
     title = {On {Decomposable} {Almost} {Pseudo} {Conharmonically} {Symmetric} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {111--124},
     year = {2012},
     volume = {51},
     number = {1},
     mrnumber = {3060013},
     zbl = {06204925},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a8/}
}
TY  - JOUR
AU  - Yilmaz, Hülya Bağdatlı
TI  - On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 111
EP  - 124
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a8/
LA  - en
ID  - AUPO_2012_51_1_a8
ER  - 
%0 Journal Article
%A Yilmaz, Hülya Bağdatlı
%T On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 111-124
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a8/
%G en
%F AUPO_2012_51_1_a8
Yilmaz, Hülya Bağdatlı. On Decomposable Almost Pseudo Conharmonically Symmetric Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 111-124. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a8/

[1] Abussattar, D. B.: On conharmonic transformations in general relativity. Bulletin of the Calcutta Mathematical Society 41 (1966), 409–416.

[2] Adati, T., Miyazawa, T.: On Riemannian space with recurrent conformal curvature. Tensor, N.S. 18 (1967), 348–354. | MR

[3] Chaki, M. C.: On pseudo symmetric manifolds. Analele Stiint, Univ. AI-I. Cuza 33 (1987), 53–58. | MR | Zbl

[4] Chaki, M. C., Gupta, B.: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113–122. | MR | Zbl

[5] De, U. C., Biswas, H. A.: On pseudo-conformally symmetric manifolds. Bull. Calcutta Math. Soc. 85, 5 (1993), 479–486. | MR | Zbl

[6] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds. Ann. Univ. Sci., Budapest. Eötvös, Sect. Math. 51 (2008), 53–68. | MR | Zbl

[7] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds. Demonstratio Math. 42, 4 (2009), 861–878. | MR | Zbl

[8] Deszcz, R.: On pseudo symmetric spaces. Bull. Belg. Math. Soc., Serie A 44 (1992), 1–34.

[9] Ficken, F. A.: The Riemannian and affine differential geometry of product spaces. Annals of Math. 40 (1939), 892–913. | DOI | MR | Zbl

[10] Ghosh, S., De, U. C., Taleshian, A.: Conharmonic curvature tensor on $N(K)$-contact metric manifolds. International Scholarly Research Network, ISRN Geometry, doi: 10.5402/2011/423798. | Zbl

[11] Ishii, Y.: On conharmonic transformations. Tensor, N.S. 7 (1957), 73–80. | MR | Zbl

[12] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).

[13] Mikeš, J.: Geodesic mappings of special Riemannian spaces. Colloq. Math. Soc. Janos Bolyai 46 (1988), 793–813 | MR

[14] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (1996), 311–333. | DOI | MR

[15] Rachůnek, L., Mikeš, J.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 44 (2005), 151–160. | MR | Zbl

[16] Schouten, J. A.: Ricci Calculus. Spinger, Berlin, 1954. | Zbl

[17] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N.S. 70 (2008), 119–134. | MR | Zbl

[18] Siddiqui, S. A., Ahsan, Z.: Conharmonic curvature tensor and the space-time general relativity. Differential Geometry, Dynamical Systems 12 (2010), 213–220. | MR

[19] Soos, G.: Über die geodätischen Abbildungen von Riemannschen Räumen auf projektivsymmetrische Riemannsche Räume. Acta Math. Acad. Sci. Hungar. 9 (1958), 359–361. | DOI | MR

[20] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Colloq. Math. Soc. J. Bolyai, Differential geometry and its applications (Eger, 1989) 56 (1992), 663–670. | MR | Zbl

[21] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2 (1950), 36–64. | MR | Zbl

[22] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 20 (1944), 340–345. | MR | Zbl

[23] Yano, K., Kon, M.: Structure on Manifolds. World Scientific, Singapore, 1986.