Keywords: harmonic unit vector field; minimal unit vector field; Lie group; Riemannian symmetric space; isometric action
@article{AUPO_2012_51_1_a7,
author = {Verh\'oczki, L\'aszl\'o},
title = {Harmonic and {Minimal} {Unit} {Vector} {Fields} on the {Symmetric} {Spaces} $G_2$ and $G_2/SO(4)$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {101--109},
year = {2012},
volume = {51},
number = {1},
mrnumber = {3060012},
zbl = {06204924},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/}
}
TY - JOUR AU - Verhóczki, László TI - Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 101 EP - 109 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/ LA - en ID - AUPO_2012_51_1_a7 ER -
%0 Journal Article %A Verhóczki, László %T Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$ %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 101-109 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/ %G en %F AUPO_2012_51_1_a7
Verhóczki, László. Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/
[1] Berndt, J., Vanhecke, L., Verhóczki, L.: Harmonic and minimal unit vector fields on Riemannian symmetric spaces. Illinois J. Math. 47 (2003), 1273–1286. | MR | Zbl
[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields. Acta Math. Hungar. 90 (2001), 317–331. | DOI | MR | Zbl
[3] Boeckx, E., Vanhecke, L.: Isoparametric functions and harmonic and minimal unit vector fields. In: Fernández, M., Wolf, J. A. (eds.) Global differential geometry: The mathematical legacy of Alfred Gray Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 20–31. | MR | Zbl
[4] Gil-Medrano, O., Llinares-Fuster, E.: Minimal unit vector fields. Tôhoku Math. J. 54 (2002), 71–84. | DOI | MR | Zbl
[5] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Academic Press, New York, 1978. | MR | Zbl
[6] Kollross, A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Amer. Math. Soc. 354 (2002), 571–612. | DOI | MR | Zbl
[7] Leung, D. S. P.: On the classification of reflective submanifolds of Riemannian symmetric spaces. Indiana Univ. Math. J. 24 (1974), 327–339. | DOI | MR | Zbl
[8] Postnikov, M.: Lectures in Geometry. Semester V. Lie groups and Lie algebras. Mir Publishers, Moscow, 1986. | MR
[9] Verhóczki, L.: The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ as tubes. Monatsh. Math. 141 (2004), 323–335. | DOI | MR | Zbl
[10] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303 (1995), 325–344. | DOI | MR | Zbl