Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 101-109 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.
The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.
Classification : 53C35, 53C40, 53C42, 53C43, 57S15
Keywords: harmonic unit vector field; minimal unit vector field; Lie group; Riemannian symmetric space; isometric action
@article{AUPO_2012_51_1_a7,
     author = {Verh\'oczki, L\'aszl\'o},
     title = {Harmonic and {Minimal} {Unit} {Vector} {Fields} on the {Symmetric} {Spaces} $G_2$ and $G_2/SO(4)$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {101--109},
     year = {2012},
     volume = {51},
     number = {1},
     mrnumber = {3060012},
     zbl = {06204924},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/}
}
TY  - JOUR
AU  - Verhóczki, László
TI  - Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 101
EP  - 109
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/
LA  - en
ID  - AUPO_2012_51_1_a7
ER  - 
%0 Journal Article
%A Verhóczki, László
%T Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 101-109
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/
%G en
%F AUPO_2012_51_1_a7
Verhóczki, László. Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a7/

[1] Berndt, J., Vanhecke, L., Verhóczki, L.: Harmonic and minimal unit vector fields on Riemannian symmetric spaces. Illinois J. Math. 47 (2003), 1273–1286. | MR | Zbl

[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields. Acta Math. Hungar. 90 (2001), 317–331. | DOI | MR | Zbl

[3] Boeckx, E., Vanhecke, L.: Isoparametric functions and harmonic and minimal unit vector fields. In: Fernández, M., Wolf, J. A. (eds.) Global differential geometry: The mathematical legacy of Alfred Gray Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 20–31. | MR | Zbl

[4] Gil-Medrano, O., Llinares-Fuster, E.: Minimal unit vector fields. Tôhoku Math. J. 54 (2002), 71–84. | DOI | MR | Zbl

[5] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Academic Press, New York, 1978. | MR | Zbl

[6] Kollross, A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Amer. Math. Soc. 354 (2002), 571–612. | DOI | MR | Zbl

[7] Leung, D. S. P.: On the classification of reflective submanifolds of Riemannian symmetric spaces. Indiana Univ. Math. J. 24 (1974), 327–339. | DOI | MR | Zbl

[8] Postnikov, M.: Lectures in Geometry. Semester V. Lie groups and Lie algebras. Mir Publishers, Moscow, 1986. | MR

[9] Verhóczki, L.: The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ as tubes. Monatsh. Math. 141 (2004), 323–335. | DOI | MR | Zbl

[10] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303 (1995), 325–344. | DOI | MR | Zbl