Keywords: paranorm space; invariant mean; orlicz function; Musielak–orlicz function; $n$-normed space; solid
@article{AUPO_2012_51_1_a6,
author = {Raj, Kuldip and Sharma, Sunil K.},
title = {A {New} {Sequence} {Space} {Defined} by a {Sequence} of {Orlicz} {Functions} over $n${-Normed} {Spaces}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {89--100},
year = {2012},
volume = {51},
number = {1},
mrnumber = {3060011},
zbl = {06204923},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/}
}
TY - JOUR AU - Raj, Kuldip AU - Sharma, Sunil K. TI - A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 89 EP - 100 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/ LA - en ID - AUPO_2012_51_1_a6 ER -
%0 Journal Article %A Raj, Kuldip %A Sharma, Sunil K. %T A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 89-100 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/ %G en %F AUPO_2012_51_1_a6
Raj, Kuldip; Sharma, Sunil K. A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/
[1] Ahmad, Z. U., Mursaleen, M.: An application of Banach limits. Proc. Amer. Math. Soc., 103 (1983), 244–246. | DOI | MR
[2] Gähler S.: Linear 2-normietre Rume. Math. Nachr. 28 (1965), 1–43. | DOI
[3] Gunawan H.: On $n$-inner product, $n$-norms, and the Cauchy–Schwartz Inequality. Scientiae Mathematicae Japonicae 5 (2001), 47–543. | MR
[4] Gunawan H.: The space of $p$-summable sequence and its natural $n$-norm. Bull. Aust. Math. Soc. 64 (2001), 137–147. | DOI | MR
[5] Gunawan H., Mashadi M.: On $n$-normed spaces. Int. J. Math. Math. Sci. 27 (2001), 631–639. | DOI | MR | Zbl
[6] Khan, V. A.: On a new sequence space defined by Orlicz functions. Commun. Fac. Sci. Univ. Ank. $A_1$ 57 (2008), 25–33. | MR | Zbl
[7] Lindenstrauss, J., Tzafriri, L.: On Orlicz seequence spaces. Israel J. Math. 10 (1971), 379–390. | DOI | MR
[8] Lorentz G. G.: A Contribution to the theory of divergent series. Acta Math. 80 (1948), 167–190. | DOI | MR
[9] Maddox, I. J.: Some properties of paranormed sequence spaces. J. London Math. Soc. 1, (1989), 316–322. | MR
[10] Maligranda, L.: Orlicz spaces & interpolation. Seminars in mathematics 5 Polish Academy of Sciences, 1989. | MR | Zbl
[11] Misiak A.: n-inner product spaces. Math. Nachr. 140, (1989), 299–319. | DOI | MR | Zbl
[12] Murasaleen, M.: Matrix transformation between some new sequence spaces. Houston J. Math. 9 (1983), 505–509.
[13] Murasaleen, M.: On some new invariant matrix methods of summability. Quart. J. Math. Oxford 34, (1983), 77–86. | DOI | MR
[14] Musielak, J.: Orlicz Spaces. Lectures Notes in Math. 1034 Springer, 1983. | Zbl
[15] Raj K., Sharma, A. K., Sharma S. K.: A Sequence space defined by Musielak-Orlicz functions. Int. J. Pure Appl. Math. 67 (2011), 475–484. | MR
[16] Raj K., Sharma, S. K., Sharma A. K.: Some difference sequence spaces in $n$-normed spaces defined by Musielak–Orlicz function. Armenian J. Math. 3 (2010), 127–141. | MR
[17] Raj K., Sharma, S. K.: Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions. Acta Univ. Sapientiae Math. 3 (2011), 97–109. | MR
[18] Rao, M. M, Ren, Z. D: Theory of Orlicz Spaces. Marcel Dekker Inc. New york, Basel, Hongkong, 1991. | MR | Zbl
[19] Schafer, P.: Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972), 104–110. | DOI | MR
[20] Wilansky, A.: Summability through Functional Analysis. North-Holland Math. Stud., 1984. | MR | Zbl