A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 89-100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce a new sequence space $ BV_{\sigma }(\mathcal {M},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal {M} = (M_k)$ and study some topological properties of this sequence space.
In this paper we introduce a new sequence space $ BV_{\sigma }(\mathcal {M},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal {M} = (M_k)$ and study some topological properties of this sequence space.
Classification : 40A05, 40D05, 46A45
Keywords: paranorm space; invariant mean; orlicz function; Musielak–orlicz function; $n$-normed space; solid
@article{AUPO_2012_51_1_a6,
     author = {Raj, Kuldip and Sharma, Sunil K.},
     title = {A {New} {Sequence} {Space} {Defined} by a {Sequence} of {Orlicz} {Functions} over $n${-Normed} {Spaces}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {89--100},
     year = {2012},
     volume = {51},
     number = {1},
     mrnumber = {3060011},
     zbl = {06204923},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/}
}
TY  - JOUR
AU  - Raj, Kuldip
AU  - Sharma, Sunil K.
TI  - A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 89
EP  - 100
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/
LA  - en
ID  - AUPO_2012_51_1_a6
ER  - 
%0 Journal Article
%A Raj, Kuldip
%A Sharma, Sunil K.
%T A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 89-100
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/
%G en
%F AUPO_2012_51_1_a6
Raj, Kuldip; Sharma, Sunil K. A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a6/

[1] Ahmad, Z. U., Mursaleen, M.: An application of Banach limits. Proc. Amer. Math. Soc., 103 (1983), 244–246. | DOI | MR

[2] Gähler S.: Linear 2-normietre Rume. Math. Nachr. 28 (1965), 1–43. | DOI

[3] Gunawan H.: On $n$-inner product, $n$-norms, and the Cauchy–Schwartz Inequality. Scientiae Mathematicae Japonicae 5 (2001), 47–543. | MR

[4] Gunawan H.: The space of $p$-summable sequence and its natural $n$-norm. Bull. Aust. Math. Soc. 64 (2001), 137–147. | DOI | MR

[5] Gunawan H., Mashadi M.: On $n$-normed spaces. Int. J. Math. Math. Sci. 27 (2001), 631–639. | DOI | MR | Zbl

[6] Khan, V. A.: On a new sequence space defined by Orlicz functions. Commun. Fac. Sci. Univ. Ank. $A_1$ 57 (2008), 25–33. | MR | Zbl

[7] Lindenstrauss, J., Tzafriri, L.: On Orlicz seequence spaces. Israel J. Math. 10 (1971), 379–390. | DOI | MR

[8] Lorentz G. G.: A Contribution to the theory of divergent series. Acta Math. 80 (1948), 167–190. | DOI | MR

[9] Maddox, I. J.: Some properties of paranormed sequence spaces. J. London Math. Soc. 1, (1989), 316–322. | MR

[10] Maligranda, L.: Orlicz spaces & interpolation. Seminars in mathematics 5 Polish Academy of Sciences, 1989. | MR | Zbl

[11] Misiak A.: n-inner product spaces. Math. Nachr. 140, (1989), 299–319. | DOI | MR | Zbl

[12] Murasaleen, M.: Matrix transformation between some new sequence spaces. Houston J. Math. 9 (1983), 505–509.

[13] Murasaleen, M.: On some new invariant matrix methods of summability. Quart. J. Math. Oxford 34, (1983), 77–86. | DOI | MR

[14] Musielak, J.: Orlicz Spaces. Lectures Notes in Math. 1034 Springer, 1983. | Zbl

[15] Raj K., Sharma, A. K., Sharma S. K.: A Sequence space defined by Musielak-Orlicz functions. Int. J. Pure Appl. Math. 67 (2011), 475–484. | MR

[16] Raj K., Sharma, S. K., Sharma A. K.: Some difference sequence spaces in $n$-normed spaces defined by Musielak–Orlicz function. Armenian J. Math. 3 (2010), 127–141. | MR

[17] Raj K., Sharma, S. K.: Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions. Acta Univ. Sapientiae Math. 3 (2011), 97–109. | MR

[18] Rao, M. M, Ren, Z. D: Theory of Orlicz Spaces. Marcel Dekker Inc. New york, Basel, Hongkong, 1991. | MR | Zbl

[19] Schafer, P.: Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972), 104–110. | DOI | MR

[20] Wilansky, A.: Summability through Functional Analysis. North-Holland Math. Stud., 1984. | MR | Zbl