Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 79-87
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence $\lbrace \alpha _n\rbrace \subset [0,1]$. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above.
In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence $\lbrace \alpha _n\rbrace \subset [0,1]$. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above.
Classification :
47H10, 54H25
Keywords: arbitrary Banach space setting; Jungck–Mann and Jungck–Ishikawa iterative processes; convex metric space
Keywords: arbitrary Banach space setting; Jungck–Mann and Jungck–Ishikawa iterative processes; convex metric space
@article{AUPO_2012_51_1_a5,
author = {Olatinwo, Memudu Olaposi},
title = {Convergence {Results} for {Jungck-type} {Iterative} {Processes} in {Convex} {Metric} {Spaces}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {79--87},
year = {2012},
volume = {51},
number = {1},
mrnumber = {3060010},
zbl = {06204922},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a5/}
}
TY - JOUR AU - Olatinwo, Memudu Olaposi TI - Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2012 SP - 79 EP - 87 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a5/ LA - en ID - AUPO_2012_51_1_a5 ER -
%0 Journal Article %A Olatinwo, Memudu Olaposi %T Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2012 %P 79-87 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a5/ %G en %F AUPO_2012_51_1_a5
Olatinwo, Memudu Olaposi. Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a5/