The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 51-77 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.
This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.
Classification : 34A34 65L06 65L20, 65L04, 65L05, 65L06
Keywords: second derivative BDF; collocation and interpolation; initial value problem; stiff stability; boundary locus
@article{AUPO_2012_51_1_a4,
     author = {Okuonghae, R. I. and Ikhile, M. N. O.},
     title = {The {Numerical} {Solution} of {Stiff} {IVPs} in {ODEs} {Using} {Modified} {Second} {Derivative} {BDF}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {51--77},
     year = {2012},
     volume = {51},
     number = {1},
     mrnumber = {3060009},
     zbl = {06204921},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a4/}
}
TY  - JOUR
AU  - Okuonghae, R. I.
AU  - Ikhile, M. N. O.
TI  - The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 51
EP  - 77
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a4/
LA  - en
ID  - AUPO_2012_51_1_a4
ER  - 
%0 Journal Article
%A Okuonghae, R. I.
%A Ikhile, M. N. O.
%T The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 51-77
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a4/
%G en
%F AUPO_2012_51_1_a4
Okuonghae, R. I.; Ikhile, M. N. O. The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 51-77. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a4/

[1] Butcher, J. C.: A modified multistep method for the numerical integration of ordinary differential equations. J. Assoc. Comput. Mach. 12 (1965), 124–135. | DOI | MR | Zbl

[2] Butcher, J. C.: The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods. Wiley, Chichester, 1987. | MR

[3] Butcher, J. C.: Some new hybrid methods for IVPs. In: Cash, J.R., Gladwell, I. (eds) Computational Ordinary Differential Equations Clarendon Press, Oxford, 1992, 29–46. | MR

[4] Butcher, J. C.: High Order A-stable Numerical Methods for Stiff Problems. Journal of Scientific Computing 25 (2005), 51–66. | DOI | MR | Zbl

[5] Butcher, J. C.: Forty-five years of A-stability. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). | MR

[6] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. sec. edi., Wiley, Chichester, 2008. | MR | Zbl

[7] Butcher, J. C.: General linear methods for ordinary differential equations. Mathematics and Computers in Simulation 79 (2009), 1834–1845. | DOI | MR | Zbl

[8] Butcher, J. C.: Trees and numerical methods for ordinary differential equations. Numerical Algorithms 53 (2010), 153–170. | DOI | MR | Zbl

[9] Butcher, J. C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40 (2005), 415–429. | DOI | MR | Zbl

[10] Butcher, J. C., Rattenbury, N.: ARK Methods for Stiff Problems. Appl. Numer. Math. 53 (2005), 165–181. | DOI | MR | Zbl

[11] Coleman, J. P., Duxbury, S. C.: Mixed collocation methods for $y^{\prime \prime }= f(x, y)$. Research Report NA-99/01, 1999 Dept. Math. Sci., University of Durham, J. Comput. Appl. (2000), 47–75. | MR

[12] Dahlquist, G.: On stability and error analysis for stiff nonlinear problems. Part 1. Report No TRITA-NA-7508, Dept. of Information processing, Computer Science, Royal Inst. of Technology, Stockholm, 1975.

[13] Enright, W. H.: Second derivative multistep methods for stiff ODEs. SIAM J. Num. Anal. 11 (1974), 321–331. | DOI | MR

[14] Enright, W. H.: Continuous numerical methods for ODEs with defect control. J. Comput. Appl. Math. 125 (2000), 159–170. | DOI | MR | Zbl

[15] Enright, W. H., Hull, T. E., Linberg, B.: Comparing numerical Methods for Stiff of ODEs systems. BIT 15 (1975), 1–48. | DOI

[16] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs. Academic Press, New York, 1978.

[17] Forrington, C. V. D.: Extensions of the predictor-corrector method for the solution of systems of ODEs. Comput. J. 4 (1961), 80–84. | DOI

[18] Gear, C. W.: The automatic integration of stiff ODEs. In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. | MR

[19] Gear, C. W.: The automatic integration of ODEs. Comm. ACM 14 (1971), 176–179. | DOI | MR

[20] Gragg, W. B., Stetter, H. J.: Generalized multistep predictor corrector methods. J. Assoc. Comput. Mach. 11 (1964), 188–209. | DOI | MR | Zbl

[21] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1996. | MR | Zbl

[22] Higham, J. D., Higham, J. N.: Matlab Guide. SIAM, Philadelphia, 2000. | MR | Zbl

[23] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs. J. Nig. Assoc. Math. Phys. 11 (2007), 175–190.

[24] Kohfeld, J. J., Thompson, G. T.: Multistep methods with modified predictors and correctors. J. Assoc. Comput. Mach. 14 (1967), 155–166. | DOI | MR | Zbl

[25] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1991. | MR

[26] Lambert, J. D.: Computational Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1973.

[27] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008.

[28] Okuonghae, R. I.: A class of Continuous hybrid LMM for stiff IVPs in ODEs. Scientific Annals of AI. I. Cuza University of Iasi, (2010), Accepted for publication.

[29] Okuonghae, R. I., Ikhile, M. N. O.: A continuous formulation of $A(\alpha )$-stable second derivative linear multistep methods for stiff IVPs and ODEs. J. of Algorithms and Comp. Technology, (2011), Accepted for publication. | MR

[30] Okuonghae, R. I., Ikhile, M. N. O.: $A(\alpha )$-stable linear multistep methods for stiff IVPs and ODEs. Acta. Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50 (2011), 73–90. | MR

[31] Selva, M., Arevalo, C., Fuherer, C.: A Collocation formulation of multistep methods for variable step-size extensions. Appl. Numer. Math. 42 (2002), 5–16. | DOI | MR

[32] Widlund, O.: A note on unconditionally stable linear multistep methods. BIT 7 (1967), 65–70. | DOI | MR | Zbl