On weakly $\phi $-symmetric Kenmotsu Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 43-50 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds. It is shown that weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds are $\eta $-Einstein.
The object of the present paper is to study weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds. It is shown that weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds are $\eta $-Einstein.
Classification : 53C15, 53C25, 53D15
Keywords: weakly $\phi $-symmetric; weakly $\phi $-Ricci symmetric; Kenmotsu manifold; Einstein manifold; $\eta $-Einstein manifold
@article{AUPO_2012_51_1_a3,
     author = {Hui, Shyamal Kumar},
     title = {On weakly $\phi $-symmetric {Kenmotsu} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {43--50},
     year = {2012},
     volume = {51},
     number = {1},
     mrnumber = {3060008},
     zbl = {06204920},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a3/}
}
TY  - JOUR
AU  - Hui, Shyamal Kumar
TI  - On weakly $\phi $-symmetric Kenmotsu Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 43
EP  - 50
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a3/
LA  - en
ID  - AUPO_2012_51_1_a3
ER  - 
%0 Journal Article
%A Hui, Shyamal Kumar
%T On weakly $\phi $-symmetric Kenmotsu Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 43-50
%V 51
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a3/
%G en
%F AUPO_2012_51_1_a3
Hui, Shyamal Kumar. On weakly $\phi $-symmetric Kenmotsu Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 43-50. http://geodesic.mathdoc.fr/item/AUPO_2012_51_1_a3/

[1] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics 509, Springer, Berlin, 1976. | MR | Zbl

[2] Cartan, E.: Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54 (1926), 214–264. | MR

[3] Chaki, M. C.: On pseudo-symmetric manifolds. An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. | MR | Zbl

[4] Chaki, M. C.: On generalized pseudo-symmetric manifolds. Publ. Math. Debrecen 45 (1994), 305–312.

[5] De, U. C.: On $\phi $-symmetric Kenmotsu manifolds. Int. Electronic J. Geom. 1, 1 (2008), 33–38. | MR | Zbl

[6] De, U. C., Bandyopadhyay, S.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 54 (1999), 377–381. | MR | Zbl

[7] Deszcz R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A 44, 1 (1992), 1–34. | MR | Zbl

[8] Hui, S. K., Matsuyama, Y., Shaikh, A. A.: On decomposable weakly conformally symmetric manifolds. Acta Math. Hungar. 128, 1-2 (2010), 82–95. | MR | Zbl

[9] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93–103. | DOI | MR | Zbl

[10] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).

[11] Mikeš, J.: Geodesic mappings of special Riemannian spaces. In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. | MR

[12] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[13] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric affinely connected spaces. Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). | MR

[14] Oubiña, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193. | MR | Zbl

[15] Özgür, C.: On weakly symmetric Kenmotsu manifolds. Diff. Geom.-Dynamical Systems 8 (2006), 204–209. | MR | Zbl

[16] Prvanović, M.: On weakly symmetric Riemmanian manifolds. Publ. Math. Debrecen 46 (1995), 19–25.

[17] Roter, W.: On conformally symmetric Ricci recurrent space. Colloq. Math. 31 (1974), 87–96. | MR

[18] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. | MR | Zbl

[19] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N. S. 70 (2008), 119–134. | MR | Zbl

[20] Shaikh, A. A., Hui, S. K.: On decomposable weakly conharmonically symmetric manifolds. Lobachevski J. Math. 29, 4 (2008), 206–215. | DOI | MR | Zbl

[21] Shaikh, A. A., Hui, S. K.: On weakly concircular symmetric manifolds. Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. | MR | Zbl

[22] Shaikh, A. A., Hui, S. K.: On weakly projective symmetric manifolds. Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. | MR | Zbl

[23] Shaikh, A. A., Hui, S. K.: On weak symmetries of trans-Sasakian manifolds. Proc. Estonian Acad. Sci. 58, 4 (2009), 213–223. | MR | Zbl

[24] Shaikh, A. A., Jana, S. K.: On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen. 71 (2007), 27–41. | MR | Zbl

[25] Shaikh, A. A., Jana, S. K.: On weakly quasi-conformally symmetric manifolds. SUT. J. Math. 43, 1 (2007), 61–83. | MR | Zbl

[26] Shukla, S. S., Shukla, M. K.: On $\phi $-Ricci symmetric Kenmotsu manifolds. Novi Sad J. Math. 39, 2 (2009), 89–95. | MR | Zbl

[27] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979, (in Russian). | MR | Zbl

[28] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R = 0$, The local version. J. Diff. Geom. 17 (1982), 531–582. | MR

[29] Tanno, S.: The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J. 21 (1969), 21–38. | DOI | MR | Zbl

[30] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tohoku Math. J. 29 (1977), 91–113. | DOI | MR

[31] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. | MR

[32] Tamássy, L., Binh, T. Q.: On weak symmetrics of Einstein and Sasakian manifolds. Tensor, N. S. 53 (1993), 140–148. | MR

[33] Walker, A. G.: On Ruses spaces of recurrent curvature. Proc. London Math. Soc. 52 (1950), 36–64. | MR