Keywords: information source; alphabet; fuzzy information; vague information; information measures; symbol; fuzzy entropy
@article{AUPO_2011_50_2_a8,
author = {Mare\v{s}, Milan},
title = {Information {Measure} for {Vague} {Symbols}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {89--94},
year = {2011},
volume = {50},
number = {2},
mrnumber = {2920710},
zbl = {1244.94023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a8/}
}
Mareš, Milan. Information Measure for Vague Symbols. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 89-94. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a8/
[1] De Luca, A., Termini, S.:: A definition of a non-probabilistic entropy in the setting of fuzzy set theory. Information and Control 20 (1972), 301–312. | DOI | MR
[2] Forte, B.: Measures of information. The general axiomatic theory. RAIRO Information Theory, Appl. 3 (1979), 63–90. | MR
[3] Kampé de Fériet, J.-M.: La théorie general de l’information et la mesure subjective de l’information. In: Lecture Notes in Math. 398 Springer Verlag, Heidelberg, 1974, 1–35.
[4] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers. Kybernetika 37 (2001), 127–145. | MR | Zbl
[5] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91, 2 (1997), 143–154. | DOI | MR
[6] Mareš, M.: Information measures and uncertainty of particular symbols. Kybernetika 46, 1 (2011), 144–163. | MR | Zbl
[7] Mareš, M.: Entropies of vague information sources. Kybernetika (submitted).
[8] Shannon, C. E., Weaver, W.: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379–423, 623–653. | DOI | MR
[9] Zadeh, L. A.: Fuzzy sets. Information and Control 8, 3 (1965), 338–353. | DOI | MR | Zbl