Information Measure for Vague Symbols
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 89-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The structures of the fuzzy information theory are focused on the concept of fuzzy entropy, where the individual information of symbols is considered only implicitely. This paper aims to fill this gap and to study the concepts of fuzzy information. Special attention is paid to the typical fuzzy set theoretical paradigma of monotonicity of operations.
The structures of the fuzzy information theory are focused on the concept of fuzzy entropy, where the individual information of symbols is considered only implicitely. This paper aims to fill this gap and to study the concepts of fuzzy information. Special attention is paid to the typical fuzzy set theoretical paradigma of monotonicity of operations.
Classification : 03E72, 62B86, 94A17
Keywords: information source; alphabet; fuzzy information; vague information; information measures; symbol; fuzzy entropy
@article{AUPO_2011_50_2_a8,
     author = {Mare\v{s}, Milan},
     title = {Information {Measure} for {Vague} {Symbols}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {89--94},
     year = {2011},
     volume = {50},
     number = {2},
     mrnumber = {2920710},
     zbl = {1244.94023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a8/}
}
TY  - JOUR
AU  - Mareš, Milan
TI  - Information Measure for Vague Symbols
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 89
EP  - 94
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a8/
LA  - en
ID  - AUPO_2011_50_2_a8
ER  - 
%0 Journal Article
%A Mareš, Milan
%T Information Measure for Vague Symbols
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 89-94
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a8/
%G en
%F AUPO_2011_50_2_a8
Mareš, Milan. Information Measure for Vague Symbols. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 89-94. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a8/

[1] De Luca, A., Termini, S.:: A definition of a non-probabilistic entropy in the setting of fuzzy set theory. Information and Control 20 (1972), 301–312. | DOI | MR

[2] Forte, B.: Measures of information. The general axiomatic theory. RAIRO Information Theory, Appl. 3 (1979), 63–90. | MR

[3] Kampé de Fériet, J.-M.: La théorie general de l’information et la mesure subjective de l’information. In: Lecture Notes in Math. 398 Springer Verlag, Heidelberg, 1974, 1–35.

[4] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers. Kybernetika 37 (2001), 127–145. | MR | Zbl

[5] Mareš, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets and Systems 91, 2 (1997), 143–154. | DOI | MR

[6] Mareš, M.: Information measures and uncertainty of particular symbols. Kybernetika 46, 1 (2011), 144–163. | MR | Zbl

[7] Mareš, M.: Entropies of vague information sources. Kybernetika (submitted).

[8] Shannon, C. E., Weaver, W.: A mathematical theory of communication. Bell. Syst. Techn. J. 27 (1948), 379–423, 623–653. | DOI | MR

[9] Zadeh, L. A.: Fuzzy sets. Information and Control 8, 3 (1965), 338–353. | DOI | MR | Zbl