Some Diagnostic Tools in Robust Econometrics
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 55-67 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Highly robust statistical and econometric methods have been developed not only as a diagnostic tool for standard methods, but they can be also used as self-standing methods for valid inference. Therefore the robust methods need to be equipped by their own diagnostic tools. This paper describes diagnostics for robust estimation of parameters in two econometric models derived from the linear regression. Both methods are special cases of the generalized method of moments estimator based on implicit weighting of individual observations. This has the effect of down-weighting less reliable observations and ensures a high robustness and low sub-sample sensitivity of the methods. Firstly, for a robust regression method efficient under heteroscedasticity we derive the Durbin–Watson test of independence of random regression errors, which is based on the approximation to the exact null distribution of the test statistic. Secondly we study the asymptotic behavior of the Durbin–Watson test statistic for the weighted instrumental variables estimator, which is a robust analogy of the classical instrumental variables estimator.
Highly robust statistical and econometric methods have been developed not only as a diagnostic tool for standard methods, but they can be also used as self-standing methods for valid inference. Therefore the robust methods need to be equipped by their own diagnostic tools. This paper describes diagnostics for robust estimation of parameters in two econometric models derived from the linear regression. Both methods are special cases of the generalized method of moments estimator based on implicit weighting of individual observations. This has the effect of down-weighting less reliable observations and ensures a high robustness and low sub-sample sensitivity of the methods. Firstly, for a robust regression method efficient under heteroscedasticity we derive the Durbin–Watson test of independence of random regression errors, which is based on the approximation to the exact null distribution of the test statistic. Secondly we study the asymptotic behavior of the Durbin–Watson test statistic for the weighted instrumental variables estimator, which is a robust analogy of the classical instrumental variables estimator.
Classification : 62G35, 62J20, 62P20
Keywords: robust regression; autocorrelated errors; heteroscedastic regression; instrumental variables; least weighted squares
@article{AUPO_2011_50_2_a6,
     author = {Kalina, Jan},
     title = {Some {Diagnostic} {Tools} in {Robust} {Econometrics}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {55--67},
     year = {2011},
     volume = {50},
     number = {2},
     mrnumber = {2920708},
     zbl = {1244.91072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a6/}
}
TY  - JOUR
AU  - Kalina, Jan
TI  - Some Diagnostic Tools in Robust Econometrics
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 55
EP  - 67
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a6/
LA  - en
ID  - AUPO_2011_50_2_a6
ER  - 
%0 Journal Article
%A Kalina, Jan
%T Some Diagnostic Tools in Robust Econometrics
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 55-67
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a6/
%G en
%F AUPO_2011_50_2_a6
Kalina, Jan. Some Diagnostic Tools in Robust Econometrics. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 55-67. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a6/

[1] Aitken, A. C.: On least squares and linear combination of observations. Proc. Roy. Statist. Soc. 55 (1935), 42–48. | Zbl

[2] Čížek, P.: Efficient robust estimation of time-series regression models. Appl. Math. 53 (2008), 267–279. | DOI | MR | Zbl

[3] Cohen-Freue, G. V., Zamar, R. H.: A robust instrumental variables estimator. J. Roy. Statist. Soc. (2011), (submitted).

[4] Cragg, J. G.: More efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica 51 (1938), 751–763. | DOI | MR

[5] Durbin, J., Watson, G. S.: Testing for serial correlation in least squares regression I. Biometrika 37 (1950), 409–428. | MR | Zbl

[6] Durbin, J., Watson, G. S.: Testing for serial correlation in least squares regression II. Biometrika 38 (1951), 159–178. | MR | Zbl

[7] Farebrother, R. W.: Pan’s procedure for the tail probabilities of the Durbin-Watson statistic. Appl. Stat. 29 (1980), 224–227. | DOI | Zbl

[8] Gagliardini, P., Trojani, F., Urga, G.: Robust GMM tests for structural breaks. Journal of Econometrics 129 (2005), 139–182. | DOI | MR

[9] Greene, W. H.: Econometric analysis. Macmillan, New York, 2002, Fifth edition.

[10] Hansen, L. P.: Large samples properties of generalized method of moments estimators. Econometrica 50 (1982), 1029–1054. | DOI | MR

[11] Hekimoglu, S., Erenoglu, R. C., Kalina, J.: Outlier detection by means of robust regression estimators for use in engineering science. Journal of Zhejiang University Science A 10 (2009), 909–921. | DOI | Zbl

[12] Jurečková, J., Picek, J.: Robust statistical methods with R. Chapman & Hall/CRC, Boca Raton, 2006. | MR | Zbl

[13] Jurečková, J., Sen, P. K.: Robust statistical procedures. Asymptotics and interrelations. Wiley, New York, 1996. | MR

[14] Kalina, J.: On multivariate methods in robust econometrics. Prague economic papers 2011, (accepted, in print).

[15] Kalina, J.: Robust image analysis of faces for genetic applications. Eur. J. Biomed. Inf. 6, 2 (2010), 6–13.

[16] Kalina, J.: Asymptotic Durbin-Watson test for robust regression. Bull. Int. Statist. Inst. 62 (2007), 3406–3409.

[17] Ortelli, C., Trojani, F.: Robust efficient method of moments. Journal of Econometrics 128 (2005), 69–97. | DOI | MR

[18] Rao, C. R.: Linear methods of statistical induction and their applications. Wiley, New York, 1973, Second edition. | MR

[19] Rousseuw, P. J., Leroy A. M.: Robust regression and outlier detection. Wiley, New York, 1987. | MR

[20] Rousseeuw, P. J., van Driessen, K.: Computing LTS regression for large data sets. Data Mining and Knowledge Discovery 12 (2006), 29–45. | DOI | MR

[21] Sakata, S., White, H.: S-estimation of nonlinear regression models with dependent and heterogeneous observations. Journal of Econometrics 103 (2001), 5–72. | DOI | MR | Zbl

[22] Víšek, J. Á.: Robust error-term-scale estimate. In: Antoch, J., Hušková, M., Sen, P. K. (eds.) Nonparametrics and robustness in modern statistical inference and time series analysis, IMS Collections 7, Institute of Mathematical Statistics, Beachwood, Ohio, 2010, 254–267. | MR

[23] Víšek, J. Á.: Instrumental weighted variables. Austrian J. Statist. 35 (2006), 379–387.

[24] Víšek, J. Á.: Robustifying generalized method of moments. In: Kupka, K. (ed.) Data analysis 2004/II, Progressive methods of statistical data analysis and modelling for research and technical practice, Trilobyte Statistical Software, Pardubice, 2005, 171–193.

[25] Víšek, J. Á.: Regression with high breakdown point. In: Antoch, J., Dohnal, G. (eds.) Proceedings of ROBUST 2000, Summer School of JČMF, JČMF and Czech Statistical Society, 2001, 324–356.

[26] Wooldridge, J. M.: Applications of generalized method of moments estimation. J. Econ. Perspect. 15, 4 (2001), 87–100. | DOI