Keywords: De Novo programming; multiple objectives; linear programming; trade-offs
@article{AUPO_2011_50_2_a3,
author = {Fiala, Petr},
title = {Multiobjective {De} {Novo} {Linear} {Programming}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {29--36},
year = {2011},
volume = {50},
number = {2},
mrnumber = {2920706},
zbl = {1244.90207},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a3/}
}
Fiala, Petr. Multiobjective De Novo Linear Programming. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 29-36. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a3/
[1] Babic, Z., Pavic, I.: Multicriterial production planning by De Novo programming approach. International Journal of Production Economics 43 (1996), 59–66. | DOI
[2] Fiala, P.: Modely a metody rozhodování. Economia, Praha, 2008.
[3] Li, R. J., Lee, E. S.: Fuzzy Approaches to Multicriteria De Novo Programs. Journal of Mathematical Analysis and Applications 153 (1990), 13–20. | MR | Zbl
[4] Shi, Y.: Studies on Optimum-Path Ratios in De Novo Programming Problems. Computers and Mathematics with Applications 29 (1995), 43–50. | DOI | MR
[5] Zelený, M.: De Novo Programming. Ekonomicko-matematický obzor 26 (1990), 406–413. | MR
[6] Zeleny, M.: Multiobjective Optimization, Systems Design and De Novo Programming. In: Zopounidis, C., Pardalos, P. M. (eds.): Handbook of Multicriteria Analysis, Springer, Berlin, 2010.
[7] Zeleny, M.: Optimal Given System vs. Designing Optimal System: The De Novo Programming Approach. International Journal of General System 17 (1990), 295–307. | DOI
[8] Zhang, Y. M., Huang, G. H., Zhang, X. D.: Inexact de Novo programming for water resources systems planning. European Journal of Operational Research 199 (2009), 531–541. | DOI | MR | Zbl