Keywords: linear regression model with type-II constraints; orthogonal regression; estimation
@article{AUPO_2011_50_2_a2,
author = {Donevska, Sandra and Fi\v{s}erov\'a, Eva and Hron, Karel},
title = {On the {Equivalence} between {Orthogonal} {Regression} and {Linear} {Model} with {Type-II} {Constraints}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {19--27},
year = {2011},
volume = {50},
number = {2},
mrnumber = {2920705},
zbl = {1244.62097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a2/}
}
TY - JOUR AU - Donevska, Sandra AU - Fišerová, Eva AU - Hron, Karel TI - On the Equivalence between Orthogonal Regression and Linear Model with Type-II Constraints JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 19 EP - 27 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a2/ LA - en ID - AUPO_2011_50_2_a2 ER -
%0 Journal Article %A Donevska, Sandra %A Fišerová, Eva %A Hron, Karel %T On the Equivalence between Orthogonal Regression and Linear Model with Type-II Constraints %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2011 %P 19-27 %V 50 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a2/ %G en %F AUPO_2011_50_2_a2
Donevska, Sandra; Fišerová, Eva; Hron, Karel. On the Equivalence between Orthogonal Regression and Linear Model with Type-II Constraints. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 19-27. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a2/
[1] Anděl, J.: Statistical Methods. Matfyzpress, Praha, 2007, (in Czech).
[2] Caroll, R. J., Ruppert, D.: The use and misuse of orthogonal regression in linear errors-in-variables models. Am. Stat. 50 (1996), 1–6.
[3] Casella, G., Berger, R. L.: Statistical Inference. Duxbury Press, Pacific Grove, 2002, (sec. ed.).
[4] Fišerová, E., Hron, K.: Total least squares solution for compositional data using linear models. Journal of Applied Statistics 37 (2010), 1137–1152. | DOI | MR
[5] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.
[6] Fuller, W. A.: Measurement Error Models. Wiley, New York, 1987. | MR | Zbl
[7] Hillegers, L. T. M. E.: The estimation of parameters in functional relationship models. Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, 1986. | MR
[8] Jackson, J. D., Dunlevy, J. A.: Orthogonal least squares and the interchangeability of alternative proxy variables in the social sciences. Journal of the Royal Statistical Society Series D (The Statistician) 37, 1 (1988), 7–14.
[9] Jolicoeur, P.: Interval estimation of the slope of the major axis of a bivariate normal distribution in the case of a small sample. Biometrics 24 (1968), 679–682. | DOI
[10] Kendall, M. G., Stuart, A.: The Advanced Theory of Statistics, Vol. 2. Charles Griffin, London, 1967.
[11] Kubáček, L., Kubáčková, L.: One of the calibration problems. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 36 (1997), 117–130. | MR
[12] Markovsky, I., Van Huffel, S.: Overview of total least-squares methods. Signal Processing 87 (2007), 2283–2320. | DOI | Zbl
[13] Nestares, O., Fleet, D. J., Heeger, D. J.: Likelihood functions and confidence bounds for total-least-squares problems. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’00) 1 (2000), 1523–1530.
[14] Van Huffel, S., Lemmerling, P.: Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications. Kluwer, Dordrecht, 2002. | MR
[15] Van Huffel, S., Vandevalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia, 1991. | MR
[16] Wimmer, G., Witkovský, V.: Univariate linear calibration via replicated errors-in-variables model models. J. Stat. Comput. Simul. 77 (2007), 213–227. | DOI | MR