Overview of Recent Results in Growth-curve-type Multivariate Linear Models
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 137-146 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^{k}_{i=1}X_iB_iZ_i^{\prime }+e, \quad \operatorname{vec}(e)\sim N_{n\times p}\left(0,\Sigma \otimes I_n\right). \] Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.
The Extended Growth Curve Model (ECGM) is a multivariate linear model connecting different multivariate regression models in sample subgroups through common variance matrix. It has the form: \[ Y=\sum ^{k}_{i=1}X_iB_iZ_i^{\prime }+e, \quad \operatorname{vec}(e)\sim N_{n\times p}\left(0,\Sigma \otimes I_n\right). \] Here, matrices $X_i$ contain subgroup division indicators, and $Z_i$ corresponding regressors. If $k=1$, we speak about (ordinary) Growth Curve Model. The model has already its age (it dates back to 1964), but it has many important applications. That is why it is still intensively studied. Many articles investigating different aspects or special cases of the model appeared in recent years. We will try to summarize the progress done so far.
Classification : 62-02, 62H99
Keywords: growth curve model; extended growth curve model; multivariate linear model
@article{AUPO_2011_50_2_a14,
     author = {\v{Z}e\v{z}ula, Ivan and Klein, Daniel},
     title = {Overview of {Recent} {Results} in {Growth-curve-type} {Multivariate} {Linear} {Models}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {137--146},
     year = {2011},
     volume = {50},
     number = {2},
     mrnumber = {2920716},
     zbl = {1244.62080},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a14/}
}
TY  - JOUR
AU  - Žežula, Ivan
AU  - Klein, Daniel
TI  - Overview of Recent Results in Growth-curve-type Multivariate Linear Models
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 137
EP  - 146
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a14/
LA  - en
ID  - AUPO_2011_50_2_a14
ER  - 
%0 Journal Article
%A Žežula, Ivan
%A Klein, Daniel
%T Overview of Recent Results in Growth-curve-type Multivariate Linear Models
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 137-146
%V 50
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a14/
%G en
%F AUPO_2011_50_2_a14
Žežula, Ivan; Klein, Daniel. Overview of Recent Results in Growth-curve-type Multivariate Linear Models. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 137-146. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a14/