Optimal Convective Heat-Transport
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 13-18
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The one-dimensional steady-state convection-diffusion problem for the unknown temperature $y(x)$ of a medium entering the interval $(a,b)$ with the temperature $y_{\min }$ and flowing with a positive velocity $v(x)$ is studied. The medium is being heated with an intensity corresponding to $y_{\max }-y(x)$ for a constant $y_{\max }>y_{\min }$. We are looking for a velocity $v(x)$ with a given average such that the outflow temperature $y(b)$ is maximal and discuss the influence of the boundary condition at the point $b$ on the “maximizing” function $v(x)$.
The one-dimensional steady-state convection-diffusion problem for the unknown temperature $y(x)$ of a medium entering the interval $(a,b)$ with the temperature $y_{\min }$ and flowing with a positive velocity $v(x)$ is studied. The medium is being heated with an intensity corresponding to $y_{\max }-y(x)$ for a constant $y_{\max }>y_{\min }$. We are looking for a velocity $v(x)$ with a given average such that the outflow temperature $y(b)$ is maximal and discuss the influence of the boundary condition at the point $b$ on the “maximizing” function $v(x)$.
Classification :
34B05, 65L10
Keywords: convective heat-transport; two-point convection-diffusion boundary-value problem; optimization of the amount of heat
Keywords: convective heat-transport; two-point convection-diffusion boundary-value problem; optimization of the amount of heat
@article{AUPO_2011_50_2_a1,
author = {Dal{\'\i}k, Josef and P\v{r}ibyl, Oto},
title = {Optimal {Convective} {Heat-Transport}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {13--18},
year = {2011},
volume = {50},
number = {2},
mrnumber = {2920704},
zbl = {1244.76022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a1/}
}
TY - JOUR AU - Dalík, Josef AU - Přibyl, Oto TI - Optimal Convective Heat-Transport JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 13 EP - 18 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a1/ LA - en ID - AUPO_2011_50_2_a1 ER -
Dalík, Josef; Přibyl, Oto. Optimal Convective Heat-Transport. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 2, pp. 13-18. http://geodesic.mathdoc.fr/item/AUPO_2011_50_2_a1/