Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 99-118 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Existence principles for solutions of singular differential systems$ (\phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime }) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb {R}^N$ onto $\mathbb {R}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.
Existence principles for solutions of singular differential systems$ (\phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime }) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb {R}^N$ onto $\mathbb {R}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given.
Classification : 34B16, 34B18, 47H11
Keywords: singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree
@article{AUPO_2011_50_1_a8,
     author = {Stan\v{e}k, Svatoslav},
     title = {Existence {Principles} for {Singular} {Vector} {Nonlocal} {Boundary} {Value} {Problems} with $\phi ${-Laplacian} and their {Applications}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {99--118},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920702},
     zbl = {1258.34045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 99
EP  - 118
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/
LA  - en
ID  - AUPO_2011_50_1_a8
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 99-118
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/
%G en
%F AUPO_2011_50_1_a8
Staněk, Svatoslav. Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 99-118. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/

[1] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions of nonlocal boundary value problems. Glasg. Math. J. 46, 3 (2004), 537–550. | DOI | MR

[2] Agarwal, R. P., O’Regan, D., Staněk, S.: Solvability of singular Dirichlet boundary-value problems with given maximal values for positive solutions. Proc. Eding. Math. Soc. 48, 2 (2005), 1–19. | DOI | MR | Zbl

[3] Agarwal, R. P., O’Regan, D., Staněk, S.: General existence principles for nonlocal boundary value problems with $\phi $-Laplacian and their applications. Abstr. Appl. Anal. 2006, ID 96826, 1–30. | MR

[4] Amster, P., De Nápoli, P.: Landesman–Lazer type conditions for a system of $p$-Laplacian like operators. J. Math. Anal. Appl. 326, 2 (2007), 1236–1243. | DOI | MR | Zbl

[5] Bartle, R. G.: A Modern Theory of Integration. AMS Providence, Rhode Island, 2001. | MR | Zbl

[6] Cabada, A., Pouso, R. L.: Existence theory for functional p-Laplacian equations with variable exponents. Nonlinear Anal. 52, 2 (2003), 557–572. | DOI | MR | Zbl

[7] Chu, J., O’Regan, D.: Multiplicity results for second order non-autonomous singular Dirichlet systems. Acta Appl. Math. 105 (2008), 323–338. | DOI | MR

[8] Dambrosio, W.: Multiple solutions of weakly-coupled systems with $p$-Laplacian operators. Result. Math. 36, 1-2 (1999), 34–54. | DOI | MR | Zbl

[9] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin, 1985. | MR | Zbl

[10] Fan, X. L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282, 2 (2003), 453–464. | DOI | MR | Zbl

[11] Fan, X. L., Wu, H. Q., Wang, F. Z.: Hartman-type results for $p(t)$-Laplacian systems. Nonlinear Anal. 52 (2003), 585–594. | DOI | MR | Zbl

[12] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York, 1965. | MR | Zbl

[13] Jebelean, P., Precup, R.: Solvability of $p,q$-Laplacian systems with potential boundary conditions. Appl. Anal. 89, 2 (2010), 221–228. | DOI | MR | Zbl

[14] Liu, W., Liu, L., Wu, Y.: Positive solutions of singular boundary value problem for systems of second-order differential equations. Appl. Math. Comput. 208 (2008), 511–519. | DOI

[15] Lü, H., O’Regan, D., Agarwal, R. P.: Positive radial solutions for a quasilinear system. Appl. Anal. 85 (2006), 4, 363–371. | DOI | MR | Zbl

[16] Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 8 (1998), 367–393. | DOI

[17] Manásevich, R., Mawhin, J.: Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators. J. Korean Math. Soc. 37, 5 (2000), 665–685. | MR

[18] Mawhin, J.: Some boundary value problems for Hartman-type perturbations of ordinary vector $p$-Laplacian. Nonlinear Anal. 40 (2000), 497–503. | DOI | MR

[19] Mawhin, J., Ureña, A. J.: A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems. J. Inequal. Appl. 7, 5 (2002), 701–725. | MR | Zbl

[20] Nowakowski, A., Orpel, A.: Positive solutions for nonlocal boundary-value problem with vector-valued response. Electronic J. Diff. Equations 2002, 46 (2002), 1–15.

[21] del Pino, M. A., Manásevich, R. F.: $T$-periodic solutions for a second order system with singular nonlinearities. Differential Integral Equations 8 (1995), 1873–1883. | MR

[22] Rachůnková, I., Staněk, S.: General existence principle for singular BVPs and its application. Georgian Math. J. 11, 3 (2004), 549–565. | Zbl

[23] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in boundary value problems for nonlinear differential equations. In: Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, Amsterdam, 2006. | DOI

[24] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi, New York, 2008. | MR | Zbl

[25] Staněk, S.: Multiple solutions of nonlinear functional boundary value problems. Arch. Math. 74 (2000), 452–466. | DOI | MR

[26] Staněk, S.: Multiple solutions for some functional boundary value problems. Nonlinear Anal. 32 (1998), 427–438. | DOI | MR

[27] Staněk, S.: A nonlocal boundary value problem with singularities in phase variables. Math. Comput. Modelling 40, 1-2 (2004), 101–116. | DOI | MR | Zbl

[28] Staněk, S.: A nonlocal singular boundary value problem for second-order differential equations. Math. Notes (Miskolc) 5, 1 (2004), 91–104. | MR | Zbl

[29] Staněk, S.: Existence principles for higher order nonlocal boundary-value problems and their applications to singular Sturm–Liouville problems. Ukr. Mat. J. 60 (2008), 240–259. | MR | Zbl

[30] Šeda, V.: A correct problem at resonance. Differ. Integral Equ. 2, 4 (1989), 389–396. | MR

[31] Šeda, V.: On correctness of the generalized boundary value problems for systems of ordinary differential equations. Arch. Math. (Brno) 26, 2-3 (1990), 181–185. | MR

[32] Zhang, M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian. Nonlinear Anal. 29, 1 (1997), 41–51. | DOI | MR | Zbl

[33] Wei, Z.: Positive solution of singular Dirichlet boundary value problems for second order differential system. J. Math. Anal. Appl. 328 (2007), 1255–1267. | DOI | MR