Keywords: singular boundary value problem; system of differential equations; nonlocal boundary condition; existence principle; positive solution; $\phi $-Laplacian; Leray–Schauder degree
@article{AUPO_2011_50_1_a8,
author = {Stan\v{e}k, Svatoslav},
title = {Existence {Principles} for {Singular} {Vector} {Nonlocal} {Boundary} {Value} {Problems} with $\phi ${-Laplacian} and their {Applications}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {99--118},
year = {2011},
volume = {50},
number = {1},
mrnumber = {2920702},
zbl = {1258.34045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/}
}
TY - JOUR AU - Staněk, Svatoslav TI - Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 99 EP - 118 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/ LA - en ID - AUPO_2011_50_1_a8 ER -
%0 Journal Article %A Staněk, Svatoslav %T Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2011 %P 99-118 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/ %G en %F AUPO_2011_50_1_a8
Staněk, Svatoslav. Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 99-118. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a8/
[1] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions of nonlocal boundary value problems. Glasg. Math. J. 46, 3 (2004), 537–550. | DOI | MR
[2] Agarwal, R. P., O’Regan, D., Staněk, S.: Solvability of singular Dirichlet boundary-value problems with given maximal values for positive solutions. Proc. Eding. Math. Soc. 48, 2 (2005), 1–19. | DOI | MR | Zbl
[3] Agarwal, R. P., O’Regan, D., Staněk, S.: General existence principles for nonlocal boundary value problems with $\phi $-Laplacian and their applications. Abstr. Appl. Anal. 2006, ID 96826, 1–30. | MR
[4] Amster, P., De Nápoli, P.: Landesman–Lazer type conditions for a system of $p$-Laplacian like operators. J. Math. Anal. Appl. 326, 2 (2007), 1236–1243. | DOI | MR | Zbl
[5] Bartle, R. G.: A Modern Theory of Integration. AMS Providence, Rhode Island, 2001. | MR | Zbl
[6] Cabada, A., Pouso, R. L.: Existence theory for functional p-Laplacian equations with variable exponents. Nonlinear Anal. 52, 2 (2003), 557–572. | DOI | MR | Zbl
[7] Chu, J., O’Regan, D.: Multiplicity results for second order non-autonomous singular Dirichlet systems. Acta Appl. Math. 105 (2008), 323–338. | DOI | MR
[8] Dambrosio, W.: Multiple solutions of weakly-coupled systems with $p$-Laplacian operators. Result. Math. 36, 1-2 (1999), 34–54. | DOI | MR | Zbl
[9] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin, 1985. | MR | Zbl
[10] Fan, X. L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282, 2 (2003), 453–464. | DOI | MR | Zbl
[11] Fan, X. L., Wu, H. Q., Wang, F. Z.: Hartman-type results for $p(t)$-Laplacian systems. Nonlinear Anal. 52 (2003), 585–594. | DOI | MR | Zbl
[12] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York, 1965. | MR | Zbl
[13] Jebelean, P., Precup, R.: Solvability of $p,q$-Laplacian systems with potential boundary conditions. Appl. Anal. 89, 2 (2010), 221–228. | DOI | MR | Zbl
[14] Liu, W., Liu, L., Wu, Y.: Positive solutions of singular boundary value problem for systems of second-order differential equations. Appl. Math. Comput. 208 (2008), 511–519. | DOI
[15] Lü, H., O’Regan, D., Agarwal, R. P.: Positive radial solutions for a quasilinear system. Appl. Anal. 85 (2006), 4, 363–371. | DOI | MR | Zbl
[16] Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 8 (1998), 367–393. | DOI
[17] Manásevich, R., Mawhin, J.: Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators. J. Korean Math. Soc. 37, 5 (2000), 665–685. | MR
[18] Mawhin, J.: Some boundary value problems for Hartman-type perturbations of ordinary vector $p$-Laplacian. Nonlinear Anal. 40 (2000), 497–503. | DOI | MR
[19] Mawhin, J., Ureña, A. J.: A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems. J. Inequal. Appl. 7, 5 (2002), 701–725. | MR | Zbl
[20] Nowakowski, A., Orpel, A.: Positive solutions for nonlocal boundary-value problem with vector-valued response. Electronic J. Diff. Equations 2002, 46 (2002), 1–15.
[21] del Pino, M. A., Manásevich, R. F.: $T$-periodic solutions for a second order system with singular nonlinearities. Differential Integral Equations 8 (1995), 1873–1883. | MR
[22] Rachůnková, I., Staněk, S.: General existence principle for singular BVPs and its application. Georgian Math. J. 11, 3 (2004), 549–565. | Zbl
[23] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in boundary value problems for nonlinear differential equations. In: Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, Amsterdam, 2006. | DOI
[24] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi, New York, 2008. | MR | Zbl
[25] Staněk, S.: Multiple solutions of nonlinear functional boundary value problems. Arch. Math. 74 (2000), 452–466. | DOI | MR
[26] Staněk, S.: Multiple solutions for some functional boundary value problems. Nonlinear Anal. 32 (1998), 427–438. | DOI | MR
[27] Staněk, S.: A nonlocal boundary value problem with singularities in phase variables. Math. Comput. Modelling 40, 1-2 (2004), 101–116. | DOI | MR | Zbl
[28] Staněk, S.: A nonlocal singular boundary value problem for second-order differential equations. Math. Notes (Miskolc) 5, 1 (2004), 91–104. | MR | Zbl
[29] Staněk, S.: Existence principles for higher order nonlocal boundary-value problems and their applications to singular Sturm–Liouville problems. Ukr. Mat. J. 60 (2008), 240–259. | MR | Zbl
[30] Šeda, V.: A correct problem at resonance. Differ. Integral Equ. 2, 4 (1989), 389–396. | MR
[31] Šeda, V.: On correctness of the generalized boundary value problems for systems of ordinary differential equations. Arch. Math. (Brno) 26, 2-3 (1990), 181–185. | MR
[32] Zhang, M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian. Nonlinear Anal. 29, 1 (1997), 41–51. | DOI | MR | Zbl
[33] Wei, Z.: Positive solution of singular Dirichlet boundary value problems for second order differential system. J. Math. Anal. Appl. 328 (2007), 1255–1267. | DOI | MR