The Projectivization of Conformal Models of Fibrations Determined by the Algebra of Quaternions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 91-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim is to study the principal bundles determined by the algebra of quaternions in the projective model. The projectivization of the conformal model of the Hopf fibration is considered as example.
Our aim is to study the principal bundles determined by the algebra of quaternions in the projective model. The projectivization of the conformal model of the Hopf fibration is considered as example.
Classification : 53B20, 53B30, 53C21
Keywords: conformal mapping; geodesic mapping; conformal-geodesic mapping; initial conditions; (pseudo-) Riemannian space
@article{AUPO_2011_50_1_a7,
     author = {Kuzmina, Irina A. and Mike\v{s}, Josef and Van\v{z}urov\'a, Alena},
     title = {The {Projectivization} of {Conformal} {Models} of {Fibrations} {Determined} by the {Algebra} of {Quaternions}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {91--98},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920701},
     zbl = {1252.53023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a7/}
}
TY  - JOUR
AU  - Kuzmina, Irina A.
AU  - Mikeš, Josef
AU  - Vanžurová, Alena
TI  - The Projectivization of Conformal Models of Fibrations Determined by the Algebra of Quaternions
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 91
EP  - 98
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a7/
LA  - en
ID  - AUPO_2011_50_1_a7
ER  - 
%0 Journal Article
%A Kuzmina, Irina A.
%A Mikeš, Josef
%A Vanžurová, Alena
%T The Projectivization of Conformal Models of Fibrations Determined by the Algebra of Quaternions
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 91-98
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a7/
%G en
%F AUPO_2011_50_1_a7
Kuzmina, Irina A.; Mikeš, Josef; Vanžurová, Alena. The Projectivization of Conformal Models of Fibrations Determined by the Algebra of Quaternions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 91-98. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a7/

[1] Berger, M.: Geometry I. Springer, New York– Berlin–Heidelberg, 1987. | Zbl

[2] Jukl, M.: On homologies of Klingenberg projective spaces oven special commutative local rings. Publ. Math. Univ. Debrec. 55 (1999), 113–121. | MR

[3] Jukl, M., Snášel, V.: Projective equivalence of quadrics in Klingenberg projective spaces over a special local ring. Int. Electr. J. Geom. 2 (2009), 34–38. | MR | Zbl

[4] Kuzmina, I. A., Shapukov, B. N.: Conformal and elliptic models of the Hopf fibration. Tr. geom. sem. Kazan. Univ. 24 (2003), 81–98.

[5] Luonesto, P.: Clifford Algebras and Spinors. Cambridge Univ. Press, Cambridge, 1997. | MR

[6] Norden, A. P.: Normalization theory and vector bundles. Tr. Geom. Semin. 9 (1976), 68–76, (in Russian). | MR | Zbl

[7] Norden, A. P.: Spaces of Affine Connection. Nauka, Moscow, 1976. | MR

[8] Rozenfeld, B. A.: Higher-dimensional Spaces. Nauka, Moscow, 1966.

[9] Rozenfeld, B. A.: Geometry of Lie Groups. Kluwer, Dordrecht–Boston–London, 1997.

[10] Shapukov, B. N.: Connections on a differential fibred bundle. Tr. geom. sem. Kazan. Univ. 1 (1980), 97–109.

[11] Shirokov, A. P.: Non-Euclidean Spaces. Kazan University, Kazan, 1997, (in Russian). | Zbl