Keywords: second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus
@article{AUPO_2011_50_1_a6,
author = {Okuonghae, R. I. and Ikhile, M. N. O.},
title = {A ($\alpha ${)-Stable} {Linear} {Multistep} {Methods} for {Stiff} {IVPs} in {ODEs}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {73--90},
year = {2011},
volume = {50},
number = {1},
mrnumber = {2920700},
zbl = {1244.65098},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/}
}
TY - JOUR AU - Okuonghae, R. I. AU - Ikhile, M. N. O. TI - A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 73 EP - 90 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/ LA - en ID - AUPO_2011_50_1_a6 ER -
%0 Journal Article %A Okuonghae, R. I. %A Ikhile, M. N. O. %T A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2011 %P 73-90 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/ %G en %F AUPO_2011_50_1_a6
Okuonghae, R. I.; Ikhile, M. N. O. A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 73-90. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/
[1] Butcher, J. C.: The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods. Wiley, Chichester, 1987. | MR
[2] Butcher, J. C.: High Order A-stable Numerical Methods for Stiff Problems. Journal of Scientific Computing 25 (2005), 51–66. | MR | Zbl
[3] Butcher, J. C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40 (2005), 415–429. | DOI | MR | Zbl
[4] Butcher, J. C.: Forty-five years of A-stability. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). | MR
[5] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. sec. edi., Wiley, Chichester, 2008. | MR | Zbl
[6] Butcher, J. C.: General linear methods for ordinary differential equations. Mathematics and Computers in Simulation 79 (2009), 1834–1845. | DOI | MR | Zbl
[7] Butcher, J. C.: Trees and numerical methods for ordinary differential equations. Numerical Algorithms 53 (2010), 153–170. | DOI | MR | Zbl
[8] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3 (1963), 27–43. | DOI | MR | Zbl
[9] Enright, W. H.: Second derivative multistep methods for stiff ODEs. SIAM J. Num. Anal. 11 (1974), 321–331. | DOI | MR
[10] Enright, W. H.: Continuous numerical methods for ODEs with defect control. J. Comput. Appl. Math. 125 (2000), 159–170. | DOI | MR | Zbl
[11] Enright, W. H., Hull, T. E., Linberg, B.: Comparing numerical Methods for Stiff of ODEs systems. BIT 15 (1975), 1–48. | DOI
[12] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs. Academic Press, New York, 1978.
[13] Gear, C. W.: The automatic integration of stiff ODEs. In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. | MR
[14] Gear, C. W.: The automatic integration of ODEs. Comm. ACM 14 (1971), 176–179. | DOI | MR
[15] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1996. | MR | Zbl
[16] Higham, J. D., Higham, J. N.: Matlab Guide. SIAM, Philadelphia, 2000. | MR | Zbl
[17] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs. J. Nig. Assoc. Math. Phys. 11 (2007), 175–190.
[18] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1991. | MR
[19] Lambert, J. D.: Computational Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1973. | MR
[20] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008.
[21] Selva, M., Arevalo, C., Fuherer, C.: A Collocation formulation of multistep methods for variable step-size extensions. Appl. Numer. Math. 42 (2002), 5–16. | DOI | MR
[22] Widlund, O.: A note on unconditionally stable linear multistep methods. BIT 7 (1967), 65–70. | DOI | MR | Zbl