A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 73-90 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method.
In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method.
Classification : 65L05, 65L06
Keywords: second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus
@article{AUPO_2011_50_1_a6,
     author = {Okuonghae, R. I. and Ikhile, M. N. O.},
     title = {A ($\alpha ${)-Stable} {Linear} {Multistep} {Methods} for {Stiff} {IVPs} in {ODEs}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {73--90},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920700},
     zbl = {1244.65098},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/}
}
TY  - JOUR
AU  - Okuonghae, R. I.
AU  - Ikhile, M. N. O.
TI  - A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 73
EP  - 90
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/
LA  - en
ID  - AUPO_2011_50_1_a6
ER  - 
%0 Journal Article
%A Okuonghae, R. I.
%A Ikhile, M. N. O.
%T A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 73-90
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/
%G en
%F AUPO_2011_50_1_a6
Okuonghae, R. I.; Ikhile, M. N. O. A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 73-90. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a6/

[1] Butcher, J. C.: The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods. Wiley, Chichester, 1987. | MR

[2] Butcher, J. C.: High Order A-stable Numerical Methods for Stiff Problems. Journal of Scientific Computing 25 (2005), 51–66. | MR | Zbl

[3] Butcher, J. C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40 (2005), 415–429. | DOI | MR | Zbl

[4] Butcher, J. C.: Forty-five years of A-stability. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). | MR

[5] Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. sec. edi., Wiley, Chichester, 2008. | MR | Zbl

[6] Butcher, J. C.: General linear methods for ordinary differential equations. Mathematics and Computers in Simulation 79 (2009), 1834–1845. | DOI | MR | Zbl

[7] Butcher, J. C.: Trees and numerical methods for ordinary differential equations. Numerical Algorithms 53 (2010), 153–170. | DOI | MR | Zbl

[8] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3 (1963), 27–43. | DOI | MR | Zbl

[9] Enright, W. H.: Second derivative multistep methods for stiff ODEs. SIAM J. Num. Anal. 11 (1974), 321–331. | DOI | MR

[10] Enright, W. H.: Continuous numerical methods for ODEs with defect control. J. Comput. Appl. Math. 125 (2000), 159–170. | DOI | MR | Zbl

[11] Enright, W. H., Hull, T. E., Linberg, B.: Comparing numerical Methods for Stiff of ODEs systems. BIT 15 (1975), 1–48. | DOI

[12] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs. Academic Press, New York, 1978.

[13] Gear, C. W.: The automatic integration of stiff ODEs. In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. | MR

[14] Gear, C. W.: The automatic integration of ODEs. Comm. ACM 14 (1971), 176–179. | DOI | MR

[15] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1996. | MR | Zbl

[16] Higham, J. D., Higham, J. N.: Matlab Guide. SIAM, Philadelphia, 2000. | MR | Zbl

[17] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs. J. Nig. Assoc. Math. Phys. 11 (2007), 175–190.

[18] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1991. | MR

[19] Lambert, J. D.: Computational Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1973. | MR

[20] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008.

[21] Selva, M., Arevalo, C., Fuherer, C.: A Collocation formulation of multistep methods for variable step-size extensions. Appl. Numer. Math. 42 (2002), 5–16. | DOI | MR

[22] Widlund, O.: A note on unconditionally stable linear multistep methods. BIT 7 (1967), 65–70. | DOI | MR | Zbl