On Weakly $W_3$-Symmetric Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 53-71 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study weakly $W_3$-symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly $W_3$-symmetric manifold both the decompositions are weakly Ricci symmetric.
The object of the present paper is to study weakly $W_3$-symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly $W_3$-symmetric manifold both the decompositions are weakly Ricci symmetric.
Classification : 53B05, 53B35, 53C15, 53C25
Keywords: weakly $W_3$-symmetric manifold; $W_3$-curvature tensor; decomposable manifold; scalar curvature; totally umbilical hypersurfaces; totally geodesic; mean curvature
@article{AUPO_2011_50_1_a5,
     author = {Hui, Shyamal Kumar},
     title = {On {Weakly} $W_3${-Symmetric} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {53--71},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920699},
     zbl = {1252.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a5/}
}
TY  - JOUR
AU  - Hui, Shyamal Kumar
TI  - On Weakly $W_3$-Symmetric Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 53
EP  - 71
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a5/
LA  - en
ID  - AUPO_2011_50_1_a5
ER  - 
%0 Journal Article
%A Hui, Shyamal Kumar
%T On Weakly $W_3$-Symmetric Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 53-71
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a5/
%G en
%F AUPO_2011_50_1_a5
Hui, Shyamal Kumar. On Weakly $W_3$-Symmetric Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 53-71. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a5/

[1] Altay, S.: Some applications on weakly pseudosymmetric Riemannian manifolds. Diff. Geom. Dyn. Syst. 7 (2005), 1–10. | MR

[2] Binh, T. Q.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 42 (1993), 103–107. | MR | Zbl

[3] Cartan, E.: Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54 (1926), 214–264. | MR

[4] Chaki, M. C.: On pseudo-symmetric manifolds. An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. | MR | Zbl

[5] Chaki, M. C.: On generalized pseudo-symmetric manifolds. Publ. Math. Debrecen 45 (1994), 305–312.

[6] Chen, B. Y.: Geometry of submanifolds. Marcel-Deker, New York, 1973. | MR | Zbl

[7] De, U. C., Bandyopadhyay, S.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 54 (1999), 377–381. | MR | Zbl

[8] Deszcz R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A 44, 1 (1992), 1–34. | MR | Zbl

[9] Eisenhart, L. P.: Riemannian Geometry. Princeton University Press, Princeton, 1949. | MR | Zbl

[10] Hui, S. K., Matsuyama, Y., Shaikh, A. A.: On decomposable weakly conformally symmetric manifolds. Acta Math. Hungar. 128, 1-2 (2010), 82–95. | MR | Zbl

[11] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).

[12] Mikeš, J.: Geodesic mappings of special Riemannian spaces. In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. | MR

[13] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. | DOI | MR

[14] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric affinely connected spaces. Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). | MR

[15] Özen, F., Altay, S.: On weakly and pseudo symmetric Riemannian spaces. Indian J. Pure Appl. Math. 33, 10 (2001), 1477–1488. | MR

[16] Özen, F., Altay, S.: On weakly and pseudo concircular symmetric structures on a Riemannian manifold. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 47 (2008), 129–138. | MR | Zbl

[17] Pokhariyal, G. P.: Curvature tensors and their relativistic significance III. Yokohama Math. J. 21 (1973), 115–119. | MR | Zbl

[18] Prvanović, M.: On weakly symmetric Riemmanian manifolds. Publ. Math. Debrecen 46 (1995), 19–25.

[19] Roter, W.: On conformally symmetric Ricci recurrent space. Colloq. Math. 31 (1974), 87–96. | MR

[20] Schouten, J. A.: Ricci-Calculus, An introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin, 1954. | MR | Zbl

[21] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. | MR | Zbl

[22] Shaikh, A. A., Baishya, K. K.: On weakly quasi-conformally symmetric manifolds. Soochow J. Math. 31, 4 (2005), 581–595. | MR | Zbl

[23] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N. S. 70 (2008), 119–134. | MR | Zbl

[24] Shaikh, A. A., Hui, S. K.: On weakly concircular symmetric manifolds. Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. | MR | Zbl

[25] Shaikh, A. A., Hui, S. K.: On weakly projective symmetric manifolds. Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. | MR | Zbl

[26] Shaikh, A. A., Hui, S. K.: On decomposable weakly conharmonically symmetric manifolds. Lobachevski J. Math. 29, 4 (2008), 206–215. | DOI | MR | Zbl

[27] Shaikh, A. A., Jana, S. K.: On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen. 71 (2007), 27–41. | MR | Zbl

[28] Shaikh, A. A., Jana, S. K.: On weakly quasi-conformally symmetric manifolds. SUT. J. Math. 43, 1 (2007), 61–83. | MR | Zbl

[29] Shaikh, A. A., Jana, S. K, Eyasmin, S.: On weakly pseudo quasi-conformally symmetric manifolds. Indian J. Math. 50, 3 (2008), 505–518. | MR | Zbl

[30] Shaikh, A. A., Roy, I., Hui, S. K.: On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces. Global J. Science Frontier Research 10, 4 (2010), 28–30.

[31] Shaikh, A. A., Shahid, M. H., Hui, S. K.: On weakly conformally symmetric manifolds. Matematiki Vesnik 60 (2008), 269–284. | MR | Zbl

[32] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979, (in Russian). | MR | Zbl

[33] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R = 0$, The local version. J. Diff. Geom. 17 (1982), 531–582. | MR

[34] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. | MR

[35] Tamássy, L., Binh, T. Q.: On weak symmetrics of Einstein and Sasakian manifolds. Tensor, N. S. 53 (1993), 140–148. | MR

[36] Walker, A. G.: On Ruses spaces of recurrent curvature. Proc. London Math. Soc. 52 (1950), 36–64. | MR

[37] Yano, K., Kon, M.: Structure on manifolds. World Scientific Publ., Singapore, 1984. | MR