Complex Oscillation Theory of Differential Polynomials
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 43-52
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we investigate the relationship between small functions and differential polynomials $g_{f}(z)=d_{2}f^{\prime \prime }+d_{1}f^{\prime }+d_{0}f$, where $d_{0}(z)$, $d_{1}(z)$, $d_{2}(z)$ are entire functions that are not all equal to zero with $\rho (d_j)1$ $(j=0,1,2) $ generated by solutions of the differential equation $f^{\prime \prime }+A_{1}(z) e^{az}f^{\prime }+A_{0}(z) e^{bz}f=F$, where $a,b$ are complex numbers that satisfy $ab( a-b) \ne 0$ and $A_{j}( z) \lnot \equiv 0$ ($j=0,1$), $F(z) \lnot \equiv 0$ are entire functions such that $\max \left\lbrace \rho (A_j),\, j=0,1,\, \rho (F)\right\rbrace 1.$
In this paper, we investigate the relationship between small functions and differential polynomials $g_{f}(z)=d_{2}f^{\prime \prime }+d_{1}f^{\prime }+d_{0}f$, where $d_{0}(z)$, $d_{1}(z)$, $d_{2}(z)$ are entire functions that are not all equal to zero with $\rho (d_j)1$ $(j=0,1,2) $ generated by solutions of the differential equation $f^{\prime \prime }+A_{1}(z) e^{az}f^{\prime }+A_{0}(z) e^{bz}f=F$, where $a,b$ are complex numbers that satisfy $ab( a-b) \ne 0$ and $A_{j}( z) \lnot \equiv 0$ ($j=0,1$), $F(z) \lnot \equiv 0$ are entire functions such that $\max \left\lbrace \rho (A_j),\, j=0,1,\, \rho (F)\right\rbrace 1.$
Classification :
30D35, 34M10
Keywords: linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros
Keywords: linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros
@article{AUPO_2011_50_1_a4,
author = {El Farissi, Abdallah and Bela{\"\i}di, Benharrat},
title = {Complex {Oscillation} {Theory} of {Differential} {Polynomials}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {43--52},
year = {2011},
volume = {50},
number = {1},
mrnumber = {2920698},
zbl = {1244.34108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a4/}
}
TY - JOUR AU - El Farissi, Abdallah AU - Belaïdi, Benharrat TI - Complex Oscillation Theory of Differential Polynomials JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 43 EP - 52 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a4/ LA - en ID - AUPO_2011_50_1_a4 ER -
%0 Journal Article %A El Farissi, Abdallah %A Belaïdi, Benharrat %T Complex Oscillation Theory of Differential Polynomials %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2011 %P 43-52 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a4/ %G en %F AUPO_2011_50_1_a4
El Farissi, Abdallah; Belaïdi, Benharrat. Complex Oscillation Theory of Differential Polynomials. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a4/