Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 29-42 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.
For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.
Classification : 53B05, 53C30
Keywords: affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic
@article{AUPO_2011_50_1_a3,
     author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich and Vl\'a\v{s}ek, Zden\v{e}k},
     title = {Homogeneous {Geodesics} in 3-dimensional {Homogeneous} {Affine} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {29--42},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920697},
     zbl = {1244.53057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
AU  - Kowalski, Oldřich
AU  - Vlášek, Zdeněk
TI  - Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 29
EP  - 42
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/
LA  - en
ID  - AUPO_2011_50_1_a3
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%A Kowalski, Oldřich
%A Vlášek, Zdeněk
%T Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 29-42
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/
%G en
%F AUPO_2011_50_1_a3
Dušek, Zdeněk; Kowalski, Oldřich; Vlášek, Zdeněk. Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 29-42. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/

[1] Alexandroff, P. S., Hopf, H.: Topologie, Band I. Springer, 1935.

[2] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 8 (2007), 3769–3789 (electronic). | DOI | MR | Zbl

[3] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monaths. Math. 153 (2008), 1–18. | DOI | MR | Zbl

[4] Calvaruso, G., Kowalski, O., Marinosci, R.A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungarica 101, 4 (2003), 313–322. | DOI | MR | Zbl

[5] Calvaruso, G., Marinosci, R. A.: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3 (2006), 467–481. | DOI | MR | Zbl

[6] Dušek, Z.: The existence of homogeneous geodesics in homogeneous affine manifolds. J. Geom. Phys. 60 (2010), 687–689. | DOI | MR

[7] Dušek, Z., Kowalski, O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254-255 (2003), 87–96. | MR | Zbl

[8] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 1-2 (2007), 245–252. | MR | Zbl

[9] Dušek, Z., Kowalski, O.: On six-dimensional pseudo-Riemannian almost g.o. spaces. Journal of Geometry and Physics 57 (2007), 2014–2023. | DOI | MR | Zbl

[10] Dušek, Z., Kowalski, O., Nikčević, S. Ž.: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78. | DOI | MR | Zbl

[11] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273–288. | DOI | MR | Zbl

[12] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05 (2005), 050–050. | DOI | MR

[13] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I, II. Wiley Classics Library, 1996.

[14] Kowalski, O., Nikčević, S.Ž.: On geodesic graphs of Riemannian g.o. spaces. Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160. | DOI | MR

[15] Kowalski, O., Nikčević, S.Ž., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds – Examples. Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112. | MR

[16] Kowalski, O., Opozda, B., Vlášek, Z.: On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections. International J.Math. 14, 6 (2003), 1–14. | DOI | MR | Zbl

[17] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogenous connections on 2-dimensional manifolds via group-theoretical approach. Central European J. Math. 2, 1 (2004), 87–102. | DOI | MR

[18] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209–214; Erratum: Geom. Dedicata 84 (2001), 331–332. | DOI | MR | Zbl

[19] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 5, B(7) (1991), 189–246. | MR | Zbl

[20] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62, 3-4 (2003), 437–446. | MR | Zbl

[21] Kowalski, O., Vlášek, Z.: On the moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234. | MR

[22] Marinosci, R.A.: Homogeneous geodesics in a three-dimensional Lie group. Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270. | MR | Zbl

[23] Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geometry and its Applications 21, 2 (2004), 173–198. | MR | Zbl

[24] Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56 (2006), 1516–1533. | DOI | MR | Zbl