Keywords: affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic
@article{AUPO_2011_50_1_a3,
author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich and Vl\'a\v{s}ek, Zden\v{e}k},
title = {Homogeneous {Geodesics} in 3-dimensional {Homogeneous} {Affine} {Manifolds}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {29--42},
year = {2011},
volume = {50},
number = {1},
mrnumber = {2920697},
zbl = {1244.53057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/}
}
TY - JOUR AU - Dušek, Zdeněk AU - Kowalski, Oldřich AU - Vlášek, Zdeněk TI - Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 29 EP - 42 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/ LA - en ID - AUPO_2011_50_1_a3 ER -
%0 Journal Article %A Dušek, Zdeněk %A Kowalski, Oldřich %A Vlášek, Zdeněk %T Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2011 %P 29-42 %V 50 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/ %G en %F AUPO_2011_50_1_a3
Dušek, Zdeněk; Kowalski, Oldřich; Vlášek, Zdeněk. Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 29-42. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a3/
[1] Alexandroff, P. S., Hopf, H.: Topologie, Band I. Springer, 1935.
[2] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 8 (2007), 3769–3789 (electronic). | DOI | MR | Zbl
[3] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monaths. Math. 153 (2008), 1–18. | DOI | MR | Zbl
[4] Calvaruso, G., Kowalski, O., Marinosci, R.A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungarica 101, 4 (2003), 313–322. | DOI | MR | Zbl
[5] Calvaruso, G., Marinosci, R. A.: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3 (2006), 467–481. | DOI | MR | Zbl
[6] Dušek, Z.: The existence of homogeneous geodesics in homogeneous affine manifolds. J. Geom. Phys. 60 (2010), 687–689. | DOI | MR
[7] Dušek, Z., Kowalski, O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254-255 (2003), 87–96. | MR | Zbl
[8] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 1-2 (2007), 245–252. | MR | Zbl
[9] Dušek, Z., Kowalski, O.: On six-dimensional pseudo-Riemannian almost g.o. spaces. Journal of Geometry and Physics 57 (2007), 2014–2023. | DOI | MR | Zbl
[10] Dušek, Z., Kowalski, O., Nikčević, S. Ž.: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78. | DOI | MR | Zbl
[11] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273–288. | DOI | MR | Zbl
[12] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05 (2005), 050–050. | DOI | MR
[13] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I, II. Wiley Classics Library, 1996.
[14] Kowalski, O., Nikčević, S.Ž.: On geodesic graphs of Riemannian g.o. spaces. Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160. | DOI | MR
[15] Kowalski, O., Nikčević, S.Ž., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds – Examples. Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112. | MR
[16] Kowalski, O., Opozda, B., Vlášek, Z.: On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections. International J.Math. 14, 6 (2003), 1–14. | DOI | MR | Zbl
[17] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogenous connections on 2-dimensional manifolds via group-theoretical approach. Central European J. Math. 2, 1 (2004), 87–102. | DOI | MR
[18] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209–214; Erratum: Geom. Dedicata 84 (2001), 331–332. | DOI | MR | Zbl
[19] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 5, B(7) (1991), 189–246. | MR | Zbl
[20] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62, 3-4 (2003), 437–446. | MR | Zbl
[21] Kowalski, O., Vlášek, Z.: On the moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234. | MR
[22] Marinosci, R.A.: Homogeneous geodesics in a three-dimensional Lie group. Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270. | MR | Zbl
[23] Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geometry and its Applications 21, 2 (2004), 173–198. | MR | Zbl
[24] Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56 (2006), 1516–1533. | DOI | MR | Zbl