Sets Expressible as Unions of Staircase $n$-Convex Polygons
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 23-28 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.
Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.
Classification : 52A35
Keywords: orthogonal polygons; staircase $n$-convex polygons
@article{AUPO_2011_50_1_a2,
     author = {Breen, Marilyn},
     title = {Sets {Expressible} as {Unions} of {Staircase} $n${-Convex} {Polygons}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {23--28},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920696},
     zbl = {1244.52009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/}
}
TY  - JOUR
AU  - Breen, Marilyn
TI  - Sets Expressible as Unions of Staircase $n$-Convex Polygons
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 23
EP  - 28
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/
LA  - en
ID  - AUPO_2011_50_1_a2
ER  - 
%0 Journal Article
%A Breen, Marilyn
%T Sets Expressible as Unions of Staircase $n$-Convex Polygons
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 23-28
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/
%G en
%F AUPO_2011_50_1_a2
Breen, Marilyn. Sets Expressible as Unions of Staircase $n$-Convex Polygons. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 23-28. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/

[1] Breen, M.: A Helly theorem for intersections of sets starshaped via staircase $n$-paths. Ars Combinatoria 78 (2006), 47–63. | MR | Zbl

[2] Breen, M.: Intersections and unions of orthogonal polygons starshaped via staircase $n$-paths. Monatsh. Math. 148 (2006), 91–100. | DOI | MR | Zbl

[3] Breen, M.: Staircase $k$-kernels for orthogonal polygons. Arch. Math. 63 (1994), 182–190. | DOI | MR | Zbl

[4] Breen, M.: Unions of orthogonally convex or orthogonally starshaped polygons. Geometriae Dedicata 53 (1994), 49–56. | DOI | MR | Zbl

[5] Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Convexity, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI 7 (1962), 101–180. | DOI | MR

[6] Eckhoff, J.: Helly, Radon, and Carathéodory type theorems. In: Gruber, P. M., Wills, J. M., (eds.) Handbook of Convex Geometry, vol. A, North Holland, New York (1993), 389–448. | MR | Zbl

[7] Hare, W. R., Jr., Kenelly, J. W.: Sets expressible as unions of two convex sets. Proc. Amer. Math. Soc. 25 (1970), 379–380. | DOI | MR | Zbl

[8] Lawrence, J. F., Hare, W. R., Jr., Kenelly, J. W.: Finite unions of convex sets. Proc. Amer. Math. Soc. 34 (1972), 225–228. | DOI | MR | Zbl

[9] Lay, S. R.: Convex Sets and Their Applications. John Wiley, New York, 1982. | MR | Zbl

[10] McKinney, R. L.: On unions of two convex sets. Canad. J. Math 18 (1966), 883–886. | DOI | MR | Zbl

[11] Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star polygons: the perfect graph approach. J. Comput. Syst. Sci. 40 (1990), 19–48. | DOI | MR | Zbl

[12] Valentine, F. A.: Convex Sets. McGraw-Hill, New York, 1964. | MR | Zbl