Sets Expressible as Unions of Staircase $n$-Convex Polygons
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 23-28
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.
Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.
@article{AUPO_2011_50_1_a2,
author = {Breen, Marilyn},
title = {Sets {Expressible} as {Unions} of {Staircase} $n${-Convex} {Polygons}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {23--28},
year = {2011},
volume = {50},
number = {1},
mrnumber = {2920696},
zbl = {1244.52009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/}
}
TY - JOUR AU - Breen, Marilyn TI - Sets Expressible as Unions of Staircase $n$-Convex Polygons JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2011 SP - 23 EP - 28 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/ LA - en ID - AUPO_2011_50_1_a2 ER -
Breen, Marilyn. Sets Expressible as Unions of Staircase $n$-Convex Polygons. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 23-28. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a2/