On the Stability of Jungck–Mann, Jungck–Krasnoselskij and Jungck Iteration Processes in Arbitrary Banach Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 17-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we establish some stability results for the Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes in arbitrary Banach spaces. These results are proved for a pair of nonselfmappings using the Jungck–Mann, Jungck–Krasnoselskij and Jungck iterations. Our results are generalizations and extensions to a multitude of stability results in literature including those of Imoru and Olatinwo [8], Jungck [10], Berinde [1] and many others.
In this paper, we establish some stability results for the Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes in arbitrary Banach spaces. These results are proved for a pair of nonselfmappings using the Jungck–Mann, Jungck–Krasnoselskij and Jungck iterations. Our results are generalizations and extensions to a multitude of stability results in literature including those of Imoru and Olatinwo [8], Jungck [10], Berinde [1] and many others.
Classification : 47H10, 54H25
Keywords: stability; nonselfmappings; Jungck–Mann, Jungck–Krasnoselskij and Jungck iteration processes
@article{AUPO_2011_50_1_a1,
     author = {Bosede, Alfred Olufemi},
     title = {On the {Stability} of {Jungck{\textendash}Mann,} {Jungck{\textendash}Krasnoselskij} and {Jungck} {Iteration} {Processes} in {Arbitrary} {Banach} {Spaces}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {17--22},
     year = {2011},
     volume = {50},
     number = {1},
     mrnumber = {2920695},
     zbl = {1263.47076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a1/}
}
TY  - JOUR
AU  - Bosede, Alfred Olufemi
TI  - On the Stability of Jungck–Mann, Jungck–Krasnoselskij and Jungck Iteration Processes in Arbitrary Banach Spaces
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 17
EP  - 22
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a1/
LA  - en
ID  - AUPO_2011_50_1_a1
ER  - 
%0 Journal Article
%A Bosede, Alfred Olufemi
%T On the Stability of Jungck–Mann, Jungck–Krasnoselskij and Jungck Iteration Processes in Arbitrary Banach Spaces
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 17-22
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a1/
%G en
%F AUPO_2011_50_1_a1
Bosede, Alfred Olufemi. On the Stability of Jungck–Mann, Jungck–Krasnoselskij and Jungck Iteration Processes in Arbitrary Banach Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/AUPO_2011_50_1_a1/

[1] Berinde, V.: On stability of some fixed point procedures. Bul. Śtiint. Univ. Baia Mare, Ser. B, Mathematică–Informatică 17, 1 (2002), 7–14. | MR

[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. | MR | Zbl

[3] Bosede, A. O.: Noor iterations associated with Zamfirescu mappings in uniformly convex Banach spaces. Fasciculi Mathematici 42 (2009), 29–38. | MR | Zbl

[4] Bosede, A. O.: Some common fixed point theorems in normed linear spaces. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49, 1 (2010), 19–26. | MR

[5] Bosede, A. O.: Strong convergence results for the Jungck-Ishikawa and Jungck-Mann iteration processes. Bulletin of Mathematical Analysis and Applications 2, 3 (2010), 65–73. | MR

[6] Bosede, A. O., Rhoades, B. E.: Stability of Picard and Mann iterations for a general class of functions. Journal of Advanced Mathematical Studies 3, 2 (2010), 1–3. | MR

[7] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures. Math. Japonica 33 (1988), 693–706. | MR | Zbl

[8] Imoru, C. O., Olatinwo, M. O.: Some stability theorems for some iteration processes. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 45 (2006), 81–88. | MR | Zbl

[9] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR | Zbl

[10] Jungck, G.: Commuting mappings and fixed points. Amer. Math. Monthly 83 (1976), 261–263. | DOI | MR | Zbl

[11] Krasnoselskij, M. A.: Two remarks on the method of successive approximations. Uspehi Mat. Nauk. 10, 1 (1955), 123–127 (in Russian). | MR

[12] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR

[13] Olatinwo, M. O.: Some stability and strong convergence results for the Jungck–Ishikawa iteration process. Creat. Math. Inform. 17 (2008), 33–42. | MR | Zbl

[14] Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. | MR | Zbl

[15] Singh, S. L., Bhatmagar, C., Mishra, S. N.: Stability of Jungck-type iterative procedures. International J. Math. & Math. Sc. 19 (2005), 3035–3043. | DOI | MR