Medial quasigroups of type $(n,k)$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 107-122 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied).
Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied).
Classification : 05B25, 20N05
Keywords: Quasigroup; idempotent groupoid term; mediality; incidence structure; parallelism; affine space; desarguesian affine plane
@article{AUPO_2010_49_2_a8,
     author = {Van\v{z}urov\'a, Alena},
     title = {Medial quasigroups of type $(n,k)$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {107--122},
     year = {2010},
     volume = {49},
     number = {2},
     mrnumber = {2796951},
     zbl = {1236.20066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a8/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Medial quasigroups of type $(n,k)$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 107
EP  - 122
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a8/
LA  - en
ID  - AUPO_2010_49_2_a8
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Medial quasigroups of type $(n,k)$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 107-122
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a8/
%G en
%F AUPO_2010_49_2_a8
Vanžurová, Alena. Medial quasigroups of type $(n,k)$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 107-122. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a8/

[1] Belousov, V. D.: Transitive distributive quasigroups. Ukr. Mat. Zhur 10, 1 (1958), 13–22.

[2] Belousov, V. D.: Foundations of the theory of quasigroups and loops. Nauka, Moscow, 1967, (in Russian). | MR

[3] Bruck, R. H.: A Survey of Binary Systems. Springer, Berlin, 1958. | MR | Zbl

[4] Denecke., K., Wismath, Sh. L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC, 2002. | MR | Zbl

[5] Duplák, J.: On some permutations of a medial quasigroup. Mat. Čas. 24 (1974), 315–324, (in Russian). | MR

[6] Duplák, J.: On some properties of transitive quasigroups. Zborník Ped. fak. Univ. Šafárika 1 (1976), 29–35, (in Slovak).

[7] Duplák, J.: Quasigroups and translation planes. J. Geom. 43 (1992), 95–107. | DOI | MR

[8] Ganter, B., Werner, H.: Co-ordinatizing Steiner systems. Ann. Disc. Math. 7 (1980), 3–24. | DOI | MR | Zbl

[9] Havel, V. J., Vanžurová, A.: Medial Quasigroups and Geometry. Palacky University Press, Olomouc, 2006.

[10] Ihringer, Th.: Allgemeine Algebra. Teubner, Stuttgart, 1988. | MR | Zbl

[11] Lindner, C. C., Rodger, C. A.: Design Theory. CRC Press, London, New York, Washington, 1997. | Zbl

[12] Ježek, J., Kepka, T.: Medial Groupoids. Academia, Praha, 1983. | MR

[13] Kárteszi, F.: Introduction to Finite Geometries. Budapest, 1976. | MR

[14] Lenz, H.: Über die Einführung einer absoluten Polarität in die projektive und affine Geometrie des Raumes. Math. Ann. 128 (1954), 363–373. | DOI | MR | Zbl

[15] Pflugfelder, H. O.: Quasigroups and Loops, Introduction. Heldermann Verlag, Berlin, 1990. | MR | Zbl

[16] Pukharev, N. K.: On $A^k_n$-algebras and finite regular planes. Sib. Mat. Zhur. 6, 4 (1965), 892–899, (in Russian).

[17] Pukharev, N. K.: On construction of $A^k_n$-algebras. Sib. Mat. Zhur. 7, 3 (1966), 724–727, (in Russian).

[18] Pukharev, N. K.: Geometric questions of some medial quasigroups. Sib. Mat. Zhur. 9, 4 (1968), 891–897, (in Russian). | MR

[19] Pukharev, N. K.: Some properties of groupoids and quasigroups connected with balanced incomplete block schemes. Quasigroups and Latine squares, Mat. Issl., Kishinev 71 (1983), 77–85, (in Russian). | MR

[20] Romanowska, A., Smith, J. D. H.: Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity. Heldermann Verlag, Berlin, 1985. | MR | Zbl

[21] Romanowska, A., Smith, J. D. H.: Modes. World Scientific, New Jersey, London, Singapore, Hong Kong, 2002. | MR | Zbl

[22] Szamkolowicz, L.: On the problem of existence of finite regular planes. Colloq. Math. 9 (1962), 245–250. | MR | Zbl

[23] Szamkolowicz, L.: Remarks on finite regular planes. Colloq. Math. 10 (1963), 31–37. | MR | Zbl

[24] Šiftar, J.: On affine planes over $A^k_n$-quasigroups. J. Geom. 20 (1983), 1–7. | DOI | MR

[25] Stein, S. K.: Homogeneous quasigroups. Pacif. J. Math. 14 (1964), 1091–1102. | DOI | MR | Zbl

[26] Szmielew, W.: From Affine to Euclidean Geometry. Polish Scientific Publishers & D. Reidel Publishing Company, Warszawa & Dordrecht–Boston–London, 1983. | MR | Zbl