A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 95-106 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.
In this paper, the existence and the localization result will be proven for vector Dirichlet problem with an upper-Carathéodory right-hand side. The result will be obtained by combining the continuation principle with bound sets technique.
Classification : 34A60, 34B15
Keywords: Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions
@article{AUPO_2010_49_2_a7,
     author = {Pavla\v{c}kov\'a, Martina},
     title = {A bound sets technique for {Dirichlet} problem with an {upper-Carath\'eodory} right-hand side},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {95--106},
     year = {2010},
     volume = {49},
     number = {2},
     mrnumber = {2796950},
     zbl = {1237.34024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/}
}
TY  - JOUR
AU  - Pavlačková, Martina
TI  - A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 95
EP  - 106
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/
LA  - en
ID  - AUPO_2010_49_2_a7
ER  - 
%0 Journal Article
%A Pavlačková, Martina
%T A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 95-106
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/
%G en
%F AUPO_2010_49_2_a7
Pavlačková, Martina. A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 95-106. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/

[1] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications, vol. 1 Kluwer, Dordrecht, 2003. | MR | Zbl

[2] Andres, J., Pavlačková, M.: Asymptotic boundary value problems for second-order differential systems. Nonlin. Anal. 71, 5–6 (2009), 1462–1473. | DOI | MR | Zbl

[3] Appell, J., De Pascale, E., Thái, N. H., Zabreiko, P. P.: Multi-Valued Superpositions. Diss. Math., Vol. 345, PWN, Warsaw, 1995. | MR

[4] De Blasi, F. S., Pianigiani, G.: Solution sets of boundary value problems for nonconvex differential inclusions. Topol. Methods Nonlinear Anal. 1 (1993), 303–314. | MR | Zbl

[5] Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin, 1992. | MR | Zbl

[6] Erbe, L., Krawcewicz, W.: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime } \in F(t, y, y^{\prime })$. Ann. Pol. Math. 54 (1991), 195–226. | MR | Zbl

[7] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin, 1977. | MR | Zbl

[8] Halidias, N., Papageorgiou, N. S.: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $R^n$. J. Diff. Equations 147 (1998), 123–154. | DOI | MR

[9] Halidias, N., Papageorgiou, N. S.: Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions. J. Comput. Appl. Math. 113 (2000), 51–64. | DOI | MR | Zbl

[10] Kožušníková, M.: A bounding functions approach to multivalued Dirichlet problem. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55 (2007), 1–19. | MR | Zbl

[11] Kyritsi, S., Matzakos, N., Papageorgiou, N. S.: Nonlinear boundary value problems for second order differential inclusions. Czechoslovak Math. J. 55 (2005), 545–579. | DOI | MR | Zbl

[12] Miklaszewski, D.: The two-point problem for nonlinear ordinary differential equations and differential inclusions. Univ. Iagell Acta Math. 36 (1998), 127–132. | MR | Zbl

[13] Palmucci, M., Papalini, F.: Periodic and boundary value problems for second order differential inclusions. J. of Applied Math. and Stoch. Anal. 14 (2001), 161–182. | DOI | MR | Zbl

[14] Zuev, A. V.: On the Dirichlet problem for a second-order ordinary differential equation with discontinuous right-hand side. Diff. Urav. 42 (2006), 320–326. | MR | Zbl