Keywords: Dirichlet problem; upper-Carathéodory differential inclusions; bounding functions
@article{AUPO_2010_49_2_a7,
author = {Pavla\v{c}kov\'a, Martina},
title = {A bound sets technique for {Dirichlet} problem with an {upper-Carath\'eodory} right-hand side},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {95--106},
year = {2010},
volume = {49},
number = {2},
mrnumber = {2796950},
zbl = {1237.34024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/}
}
TY - JOUR AU - Pavlačková, Martina TI - A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 95 EP - 106 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/ LA - en ID - AUPO_2010_49_2_a7 ER -
%0 Journal Article %A Pavlačková, Martina %T A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 95-106 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/ %G en %F AUPO_2010_49_2_a7
Pavlačková, Martina. A bound sets technique for Dirichlet problem with an upper-Carathéodory right-hand side. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 95-106. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a7/
[1] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications, vol. 1 Kluwer, Dordrecht, 2003. | MR | Zbl
[2] Andres, J., Pavlačková, M.: Asymptotic boundary value problems for second-order differential systems. Nonlin. Anal. 71, 5–6 (2009), 1462–1473. | DOI | MR | Zbl
[3] Appell, J., De Pascale, E., Thái, N. H., Zabreiko, P. P.: Multi-Valued Superpositions. Diss. Math., Vol. 345, PWN, Warsaw, 1995. | MR
[4] De Blasi, F. S., Pianigiani, G.: Solution sets of boundary value problems for nonconvex differential inclusions. Topol. Methods Nonlinear Anal. 1 (1993), 303–314. | MR | Zbl
[5] Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin, 1992. | MR | Zbl
[6] Erbe, L., Krawcewicz, W.: Nonlinear boundary value problems for differential inclusions $y^{\prime \prime } \in F(t, y, y^{\prime })$. Ann. Pol. Math. 54 (1991), 195–226. | MR | Zbl
[7] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin, 1977. | MR | Zbl
[8] Halidias, N., Papageorgiou, N. S.: Existence and relaxation results for nonlinear second order multivalued boundary value problems in $R^n$. J. Diff. Equations 147 (1998), 123–154. | DOI | MR
[9] Halidias, N., Papageorgiou, N. S.: Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions. J. Comput. Appl. Math. 113 (2000), 51–64. | DOI | MR | Zbl
[10] Kožušníková, M.: A bounding functions approach to multivalued Dirichlet problem. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 55 (2007), 1–19. | MR | Zbl
[11] Kyritsi, S., Matzakos, N., Papageorgiou, N. S.: Nonlinear boundary value problems for second order differential inclusions. Czechoslovak Math. J. 55 (2005), 545–579. | DOI | MR | Zbl
[12] Miklaszewski, D.: The two-point problem for nonlinear ordinary differential equations and differential inclusions. Univ. Iagell Acta Math. 36 (1998), 127–132. | MR | Zbl
[13] Palmucci, M., Papalini, F.: Periodic and boundary value problems for second order differential inclusions. J. of Applied Math. and Stoch. Anal. 14 (2001), 161–182. | DOI | MR | Zbl
[14] Zuev, A. V.: On the Dirichlet problem for a second-order ordinary differential equation with discontinuous right-hand side. Diff. Urav. 42 (2006), 320–326. | MR | Zbl