Keywords: Multivariate model; estimation; testing hypotheses; sensitivity
@article{AUPO_2010_49_2_a4,
author = {Kub\'a\v{c}ek, Lubom{\'\i}r},
title = {Multivariate statistical models; solvability of basic problems},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {53--67},
year = {2010},
volume = {49},
number = {2},
mrnumber = {2796947},
zbl = {1228.62067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a4/}
}
TY - JOUR AU - Kubáček, Lubomír TI - Multivariate statistical models; solvability of basic problems JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 53 EP - 67 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a4/ LA - en ID - AUPO_2010_49_2_a4 ER -
Kubáček, Lubomír. Multivariate statistical models; solvability of basic problems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 53-67. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a4/
[1] Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. Wiley, New York, 1958. | MR | Zbl
[2] Fišerová, E., Kubáček, L.: Insensitivity regions for deformation measurement on a dam. Environmetrics 20 (2009), 776–789. | DOI | MR
[3] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.
[4] Fišerová, E., Kubáček, L.: Sensitivity analysis in singular mixed linear models with constraints. Kybernetika 39 (2003), 317–332. | MR | Zbl
[5] Fišerová, E., Kubáček, L.: Statistical problems of measurement in triangle. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Mathematica 15 (2004), 77–94. | MR
[6] Giri, N. G.: Multivariate Statistical Analysis. Marcel Dekker, New York–Basel, 2004, (second edition).
[7] Kshirsagar, A. M.: Multivariate Analysis. Marcel Dekker, New York–Basel, 1972. | MR | Zbl
[8] Kubáček, L.: Statistical models of a priori and a posteriori uncertainty in measured data. In: Proceedings of the MME’95 Symposium, Selected papers of the international symposium, September 18–20, (Eds. Hančlová, J., Dupačová, J., Močkoř, J., Ramík, J.), VŠB–Technical University, Faculty of Economics, Ostrava, 1995, 79–87.
[9] Kubáček, L.: Criterion for an approximation of variance components in regression models. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 34 (1995), 91–108. | MR
[10] Kubáček, L.: Linear model with inaccurate variance components. Applications of Mathematics 41 (1996), 433–445. | MR
[11] Kubáček, L.: On an accuracy of change points. Math. Slovaca 52 (2002), 469–484. | MR | Zbl
[12] Kubáček, L.: Multivariate Statistical Models Revisited. Vyd. University Palackého, Olomouc, 2008.
[13] Kubáček, L., Fišerová, E.: Problems of sensitiveness and linearization in a determination of isobestic points. Math. Slovaca 53 (2003), 407–426. | MR | Zbl
[14] Kubáček, L., Fišerová, E.: Isobestic points: sensitiveness and linearization. Tatra Mt. Math. Publ. 26 (2003), 1–10. | MR | Zbl
[15] Kubáček, L., Kubáčková, L.: The effect of stochastic relations on the statistical properties of an estimator. Contr. Geophys. Inst. Slov. Acad. Sci. 17 (1987), 31–42.
[16] Kubáček, L., Kubáčková, L.: Sensitiveness and non-sensitiveness in mixed linear models. Manuscripta Geodaetica 16 (1991), 63–71.
[17] Kubáček, L., Kubáčková, L.: Unified approach to determining nonsensitiveness regions. Tatra Mt. Math. Publ. 17 (1999), 1–8. | MR
[18] Kubáček, L., Kubáčková, L.: Nonsensitiveness regions in universal models. Math. Slovaca 50 (2000), 219–240. | MR
[19] Kubáček, L., Kubáčková, L.: Statistical problems of a determination of isobestic points. Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Mathematica 11 (2002), 139–150. | MR | Zbl
[20] Kubáček, L., Kubáčková, L., Tesaříková, E., Marek, J.: How the design of an experiment influences the nonsensitiveness regions in models with variance components. Application of Mathematics 43 (1998), 439–460. | DOI | MR
[21] Kubáčková, L., Kubáček, L.: Optimum estimation in a growth curve model with a priori unknown variance components in geodetic networks. Journal of Geodesy 70 (1996), 599–602.
[22] Kubáčková, L., Kubáček, L., Bognárová, M.: Effect of the changes of the covariance matrix parameters on the estimates of the first order parameters. Contr. Geophys. Inst. Slov. Acad. Sci. 20 (1990), 7–19.
[23] Rao, C. R.: Least squares theory using an estimated dispersion matrix and its application to measurement in signal. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol 1., Theory of Statistics, University of California Press, Berkeley–Los Angeles, 1967, 355–372. | MR
[24] Seber, G.: Multivariate Observations. Wiley, Hoboken, New Jersey, 2004. | MR