Keywords: Basic algebra; implication algebra; implication reduct; equivalential algebra; equivalential reduct
@article{AUPO_2010_49_2_a1,
author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav and \v{S}vr\v{c}ek, Filip},
title = {Implication and equivalential reducts of basic algebras},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {21--36},
year = {2010},
volume = {49},
number = {2},
mrnumber = {2796944},
zbl = {1235.06010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a1/}
}
TY - JOUR AU - Chajda, Ivan AU - Kolařík, Miroslav AU - Švrček, Filip TI - Implication and equivalential reducts of basic algebras JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 21 EP - 36 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a1/ LA - en ID - AUPO_2010_49_2_a1 ER -
%0 Journal Article %A Chajda, Ivan %A Kolařík, Miroslav %A Švrček, Filip %T Implication and equivalential reducts of basic algebras %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 21-36 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a1/ %G en %F AUPO_2010_49_2_a1
Chajda, Ivan; Kolařík, Miroslav; Švrček, Filip. Implication and equivalential reducts of basic algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 21-36. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a1/
[1] Abbott, J. C.: Orthoimplication algebras. Studia Logica 35 (1976), 173–177. | DOI | MR | Zbl
[2] Chajda, I., Eigenthaler, G., Länger, H.: Congruence Classes in Universal Algebra. Heldermann Verlag, Lemgo (Germany), 2003. | MR
[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo (Germany), 2007. | MR | Zbl
[4] Chajda, I., Kolařík, M.: Independence of axiom system of basic algebras. Soft Computing 13, 1 (2009), 41–43. | DOI | Zbl
[5] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht–Boston–London, 2000. | MR
[6] Kowalski, T.: Pretabular varieties of equivalential algebras. Reports on Mathematical Logic 33 (1999), 1001–1008. | MR | Zbl
[7] Megill, N. D., Pavičić, M.: Quantum implication algebras. Int. J. Theor. Phys. 42, 12 (2003), 2807–2822. | DOI | MR | Zbl
[8] Słomczynska, K.: Equivalential algebras. Part I: Representation. Algebra Universalis 35 (1996), 524–547. | DOI | MR
[9] Tax, R. E.: On the intuitionistic equivalential calcalus. Notre Dame Journal of Formal Logic 14 (1973), 448–456. | DOI | MR