Keywords: Differential equation; state-dependent delay; fixed point; impulses; infinite delay
@article{AUPO_2010_49_2_a0,
author = {Benchohra, Mouffak and Hedia, Benaouda},
title = {Existence results for first order impulsive functional differential equations with state-dependent delay},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {5--19},
year = {2010},
volume = {49},
number = {2},
mrnumber = {2796943},
zbl = {1237.34138},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/}
}
TY - JOUR AU - Benchohra, Mouffak AU - Hedia, Benaouda TI - Existence results for first order impulsive functional differential equations with state-dependent delay JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 5 EP - 19 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/ LA - en ID - AUPO_2010_49_2_a0 ER -
%0 Journal Article %A Benchohra, Mouffak %A Hedia, Benaouda %T Existence results for first order impulsive functional differential equations with state-dependent delay %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 5-19 %V 49 %N 2 %U http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/ %G en %F AUPO_2010_49_2_a0
Benchohra, Mouffak; Hedia, Benaouda. Existence results for first order impulsive functional differential equations with state-dependent delay. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/
[1] Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H.: Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay. Asian-Eur. J. Math. 1, 4 (2008), 449–468. | DOI | MR | Zbl
[2] Adimy, M., Bouzahir, H., Ezzinbi, K.: Local existence and stability for some partial functional differential equations with unbounded delay. Nonlinear Anal. 48 (2002), 323–348. | DOI | MR
[3] Adimy, M, Ezzinbi, K.: A class of linear partial neutral functional-differential equations with nondense domain. J. Differential Equations 147 (1998), 285–332. | DOI | MR | Zbl
[4] Ait Dads, E., Ezzinbi, K.: Boundedness and almost periodicity for some state-dependent delay differential equations. Electron. J. Differential Equations 2002, 67 (2002), 1–13. | MR
[5] Aiello, W. G., Freedman, H. I., Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52, 3 (1992), 855–869. | DOI | MR | Zbl
[6] Anguraj, A., Arjunan, M. M., Hernàndez, E. M.: Existence results for an impulsive neutral functional differential equation with state-dependent delay. Appl. Anal. 86, 7 (2007), 861–872. | DOI | MR
[7] Bainov, D. D., Simeonov, P. S.: Systems with Impulsive effect. Horwood, Chichister, 1989. | MR
[8] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol 2, New York, 2006. | MR | Zbl
[9] Burton, T. A., Kirk, C.: A fixed point theorem of Krasnoselskiii–Schaefer type. Math. Nachr. 189 (1998), 23–31. | DOI | MR
[10] Cao, Y., Fan, J., Gard, T. C.: The effects of state-dependent time delay on a stage-structured population growth model. Nonlinear Anal. 19, 2 (1992), 95–105. | DOI | MR | Zbl
[11] Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay. Nonlinear Anal. 4 (1980), 831–877. | DOI | MR | Zbl
[12] Domoshnitsky, A., Drakhlin, M., Litsyn, E.: On equations with delay depending on solution. Nonlinear Anal. 49, 5 (2002), 689–701. | DOI | MR | Zbl
[13] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York, 2003. | MR | Zbl
[14] Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkc. Ekvac. 21 (1978), 11–41. | MR | Zbl
[15] Hale, J. K., Verduyn Lunel, S. M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer, New York, 1993. | MR | Zbl
[16] Hartung, F.: Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174 (2005), 201–211. | DOI | MR | Zbl
[17] Hartung, F.: Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. 47 (2001), 4557–4566. | MR | Zbl
[18] Hartung, F., Turi, J.: Identification of parameters in delay equations with state-dependent delays. Nonlinear Anal. 29 (1997), 1303–1318. | DOI | MR | Zbl
[19] Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7 (2006), 510–519. | MR | Zbl
[20] Hernández, E., Sakthivel, R., Tanaka Aki, S.: Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differential Equations 2008, 28 (2008), 1–11. | MR
[21] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Unbounded Delay. Springer-Verlag, Berlin, 1991. | MR
[22] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations. Kluwer Academic Publishers, Dordrecht, 1999. | MR | Zbl
[23] Lakshmikantham, V., Bainov D. D., Simeonov, P. S.: Theory of Impulsive Differntial Equations. World Scientific, Singapore, 1989. | MR
[24] Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay. Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. | MR | Zbl
[25] Liang, J., Xiao, Ti-jun: The Cauchy problem for non linear abstract fuctionnal differential with infinte delay. Comput. Math. Appl. 40 (2000), 693–707. | DOI | MR
[26] Rezounenko, A. V., Wu, J.: A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors. J. Comput. Appl. Math. 190 (2006), 99–113. | DOI | MR | Zbl
[27] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. | MR | Zbl
[28] Willé, D. R., Baker, C. T. H.: Stepsize control and continuity consistency for state-dependent delay-differential equations. J. Comput. Appl. Math. 53 (1994), 163–170. | DOI | MR
[29] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York, 1996. | MR | Zbl