Existence results for first order impulsive functional differential equations with state-dependent delay
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 5-19 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators.
In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators.
Classification : 34A37
Keywords: Differential equation; state-dependent delay; fixed point; impulses; infinite delay
@article{AUPO_2010_49_2_a0,
     author = {Benchohra, Mouffak and Hedia, Benaouda},
     title = {Existence results for first order impulsive functional differential equations with state-dependent delay},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--19},
     year = {2010},
     volume = {49},
     number = {2},
     mrnumber = {2796943},
     zbl = {1237.34138},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/}
}
TY  - JOUR
AU  - Benchohra, Mouffak
AU  - Hedia, Benaouda
TI  - Existence results for first order impulsive functional differential equations with state-dependent delay
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 5
EP  - 19
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/
LA  - en
ID  - AUPO_2010_49_2_a0
ER  - 
%0 Journal Article
%A Benchohra, Mouffak
%A Hedia, Benaouda
%T Existence results for first order impulsive functional differential equations with state-dependent delay
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 5-19
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/
%G en
%F AUPO_2010_49_2_a0
Benchohra, Mouffak; Hedia, Benaouda. Existence results for first order impulsive functional differential equations with state-dependent delay. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/AUPO_2010_49_2_a0/

[1] Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H.: Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay. Asian-Eur. J. Math. 1, 4 (2008), 449–468. | DOI | MR | Zbl

[2] Adimy, M., Bouzahir, H., Ezzinbi, K.: Local existence and stability for some partial functional differential equations with unbounded delay. Nonlinear Anal. 48 (2002), 323–348. | DOI | MR

[3] Adimy, M, Ezzinbi, K.: A class of linear partial neutral functional-differential equations with nondense domain. J. Differential Equations 147 (1998), 285–332. | DOI | MR | Zbl

[4] Ait Dads, E., Ezzinbi, K.: Boundedness and almost periodicity for some state-dependent delay differential equations. Electron. J. Differential Equations 2002, 67 (2002), 1–13. | MR

[5] Aiello, W. G., Freedman, H. I., Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52, 3 (1992), 855–869. | DOI | MR | Zbl

[6] Anguraj, A., Arjunan, M. M., Hernàndez, E. M.: Existence results for an impulsive neutral functional differential equation with state-dependent delay. Appl. Anal. 86, 7 (2007), 861–872. | DOI | MR

[7] Bainov, D. D., Simeonov, P. S.: Systems with Impulsive effect. Horwood, Chichister, 1989. | MR

[8] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol 2, New York, 2006. | MR | Zbl

[9] Burton, T. A., Kirk, C.: A fixed point theorem of Krasnoselskiii–Schaefer type. Math. Nachr. 189 (1998), 23–31. | DOI | MR

[10] Cao, Y., Fan, J., Gard, T. C.: The effects of state-dependent time delay on a stage-structured population growth model. Nonlinear Anal. 19, 2 (1992), 95–105. | DOI | MR | Zbl

[11] Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay. Nonlinear Anal. 4 (1980), 831–877. | DOI | MR | Zbl

[12] Domoshnitsky, A., Drakhlin, M., Litsyn, E.: On equations with delay depending on solution. Nonlinear Anal. 49, 5 (2002), 689–701. | DOI | MR | Zbl

[13] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York, 2003. | MR | Zbl

[14] Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkc. Ekvac. 21 (1978), 11–41. | MR | Zbl

[15] Hale, J. K., Verduyn Lunel, S. M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer, New York, 1993. | MR | Zbl

[16] Hartung, F.: Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174 (2005), 201–211. | DOI | MR | Zbl

[17] Hartung, F.: Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. 47 (2001), 4557–4566. | MR | Zbl

[18] Hartung, F., Turi, J.: Identification of parameters in delay equations with state-dependent delays. Nonlinear Anal. 29 (1997), 1303–1318. | DOI | MR | Zbl

[19] Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7 (2006), 510–519. | MR | Zbl

[20] Hernández, E., Sakthivel, R., Tanaka Aki, S.: Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differential Equations 2008, 28 (2008), 1–11. | MR

[21] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Unbounded Delay. Springer-Verlag, Berlin, 1991. | MR

[22] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations. Kluwer Academic Publishers, Dordrecht, 1999. | MR | Zbl

[23] Lakshmikantham, V., Bainov D. D., Simeonov, P. S.: Theory of Impulsive Differntial Equations. World Scientific, Singapore, 1989. | MR

[24] Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay. Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. | MR | Zbl

[25] Liang, J., Xiao, Ti-jun: The Cauchy problem for non linear abstract fuctionnal differential with infinte delay. Comput. Math. Appl. 40 (2000), 693–707. | DOI | MR

[26] Rezounenko, A. V., Wu, J.: A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors. J. Comput. Appl. Math. 190 (2006), 99–113. | DOI | MR | Zbl

[27] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. | MR | Zbl

[28] Willé, D. R., Baker, C. T. H.: Stepsize control and continuity consistency for state-dependent delay-differential equations. J. Comput. Appl. Math. 53 (1994), 163–170. | DOI | MR

[29] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York, 1996. | MR | Zbl