Keywords: Lefschetz number; fixed point; topological vector spaces; Klee admissible spaces; absolute neighborhood multi-retracts; approximative absolute neighborhood multi-retracts; multicore
@article{AUPO_2010_49_1_a7,
author = {\'Slosarski, Miros{\l}aw},
title = {The multicores in metric spaces and their application in fixed point theory},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {75--94},
year = {2010},
volume = {49},
number = {1},
mrnumber = {2797525},
zbl = {1253.55002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a7/}
}
TY - JOUR AU - Ślosarski, Mirosław TI - The multicores in metric spaces and their application in fixed point theory JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 75 EP - 94 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a7/ LA - en ID - AUPO_2010_49_1_a7 ER -
%0 Journal Article %A Ślosarski, Mirosław %T The multicores in metric spaces and their application in fixed point theory %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 75-94 %V 49 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a7/ %G en %F AUPO_2010_49_1_a7
Ślosarski, Mirosław. The multicores in metric spaces and their application in fixed point theory. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 75-94. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a7/
[1] Agarwal, G. P., O’Regan, D.: A note on the Lefschetz fixed point theorem for admissible spaces. Bull. Korean Math. Soc. 42, 2 (2005), 307–313. | DOI | MR | Zbl
[2] Andres, J., Górniewicz, L.: Topological principles for boundary value problems. Kluwer, Dordrecht, 2003.
[3] Bogatyi, S. A.: Approximative and fundamental retracts. Math. USSR Sb. 22 (1974), 91–103. | DOI | MR
[4] Borsuk, K.: Theory of Shape. Lect. Notes Ser. 28, Matematisk Institut, Aarhus Universitet, Aarhus, 1971. | MR | Zbl
[5] Clapp, M. H.: On a generalization of absolute neighborhood retracts. Fund. Math. 70 (1971), 117–130. | MR | Zbl
[6] Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. New Jersey Princeton University Press, Princeton, 1952. | MR | Zbl
[7] Fournier, G., Granas, A.: The Lefschetz fixed point theorem for some classes of non-metrizable spaces. J. Math. Pures et Appl. 52 (1973), 271–284. | MR | Zbl
[8] Górniewicz, L.: Topological methods in fixed point theory of multi-valued mappings. Springer, New York–Berlin–Heidelberg, 2006.
[9] Górniewicz, L., Rozpłoch-Nowakowska, D.: The Lefschetz fixed point theory for morphisms in topological vector spaces. Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 20 (2002), 315–333. | MR | Zbl
[10] Górniewicz, L., Ślosarski, M.: Once more on the Lefschetz fixed point theorem. Bull. Polish Acad. Sci. Math. 55 (2007), 161–170. | DOI | MR | Zbl
[11] Górniewicz, L., Ślosarski, M.: Fixed points of mappings in Klee admissible spaces. Control and Cybernetics 36, 3 (2007). | MR
[12] Granas, A.: Generalizing the Hopf–Lefschetz fixed point theorem for non-compact ANR’s. In: Symp. Inf. Dim. Topol., Baton-Rouge, 1967.
[13] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin–Heidelberg–New York, 2003. | MR | Zbl
[14] Jaworowski, J.: Continuous Homology Properties of Approximative Retracts. Bulletin de L’Academie Polonaise des Sciences 18, 7 (1970). | MR | Zbl
[15] Krathausen, C., Müller, G., Reinermann, J., Schöneberg, R.: New Fixed Point Theorems for Compact and Nonexpansive Mappings and Applications to Hammerstein Equations. Sonderforschungsbereich 72, Approximation und Optimierung, Universität Bonn, preprint no. 92, 1976.
[16] Kryszewski, W.: The Lefschetz type theorem for a class of noncompact mappings. Suppl. Rend. Circ. Mat. Palermo 14, 2 (1987), 365–384. | MR | Zbl
[17] Leray, J., Schauder, J.: Topologie et $\acute{e}$quations fonctionnelles. Ann. Sci. Ecole Norm. Sup. 51 (1934).
[18] Peitgen, H. O.: On the Lefschetz number for iterates of continuous mappings. Proc. AMS 54 (1976), 441–444. | MR | Zbl
[19] Skiba, R., Ślosarski, M.: On a generalization of absolute neighborhood retracts. Topology and its Applications 156 (2009), 697–709. | MR | Zbl
[20] Ślosarski, M.: On a generalization of approximative absolute neighborhood retracts. Fixed Point Theory 10, 2 (2009). | MR | Zbl
[21] Ślosarski, M.: Fixed points of multivalued mappings in Hausdorff topological spaces. Nonlinear Analysis Forum 13, 1 (2008), 39–48. | MR