Keywords: 0-distributive lattice; $\alpha $-ideal; annihilator ideal; quasi-complemented lattice
@article{AUPO_2010_49_1_a6,
author = {Pawar, Y. S. and Khopade, S. S.},
title = {$\alpha $-ideals and annihilator ideals in 0-distributive lattices},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {63--74},
year = {2010},
volume = {49},
number = {1},
mrnumber = {2797524},
zbl = {1245.06023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a6/}
}
TY - JOUR AU - Pawar, Y. S. AU - Khopade, S. S. TI - $\alpha $-ideals and annihilator ideals in 0-distributive lattices JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 63 EP - 74 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a6/ LA - en ID - AUPO_2010_49_1_a6 ER -
%0 Journal Article %A Pawar, Y. S. %A Khopade, S. S. %T $\alpha $-ideals and annihilator ideals in 0-distributive lattices %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 63-74 %V 49 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a6/ %G en %F AUPO_2010_49_1_a6
Pawar, Y. S.; Khopade, S. S. $\alpha $-ideals and annihilator ideals in 0-distributive lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a6/
[1] Balasubramani, P., Venkatanarsimhan: Characterizations of the 0-distributive lattice. Indian J. Pure Appl. Math. 32, 3 (2001), 315–324. | MR
[2] Balasubramani, P.: Stone topology of the set of the set of prime filters of a 0-distributive lattice. Indian J. Pure Appl. Math. 35, 2 (2004), 149–158. | MR
[3] Cornish, W. H.: Annulets and $\propto $-ideals in a distributive lattice. J. Aust. Math. Soc. 15, 1 (1975), 70–77. | DOI | MR
[4] Grätzer, G.: Lattice Theory – First concepts and distributive lattices. Freeman and Company, San Francisco, 1971. | MR
[5] Jayaram, C.: Prime $\alpha $-ideals in a 0-distributive lattice. Indian J. Pure Appl. Math. 17, 3 (1986), 331–337. | MR | Zbl
[6] Pawar, Y. S., Mane, D. N.: $\alpha $-ideals in 0-distributive semilattices and 0-distributive lattices. Indian J. Pure Appl. Math. 24, 7-8 (1993), 435–443. | MR | Zbl
[7] Varlet, J.: A generalization of the notion of pseudo-complementedness. Bull. Soc. Roy. Liege 37 (1968), 149–158. | MR | Zbl