Keywords: Holomorphically projective mapping; equiaffine space; affine-connected space; semisymmetric space; Riemannian space; Kählerian space
@article{AUPO_2010_49_1_a4,
author = {Al Lamy, Raad J. K.},
title = {Holomorphically projective mappings of compact semisymmetric manifolds},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {49--53},
year = {2010},
volume = {49},
number = {1},
mrnumber = {2797522},
zbl = {1228.53018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/}
}
TY - JOUR AU - Al Lamy, Raad J. K. TI - Holomorphically projective mappings of compact semisymmetric manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 49 EP - 53 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/ LA - en ID - AUPO_2010_49_1_a4 ER -
%0 Journal Article %A Al Lamy, Raad J. K. %T Holomorphically projective mappings of compact semisymmetric manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 49-53 %V 49 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/ %G en %F AUPO_2010_49_1_a4
Al Lamy, Raad J. K. Holomorphically projective mappings of compact semisymmetric manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 49-53. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/
[1] Beklemishev, D. V.: Differential geometry of spaces with almost complex structure. Geometria. Itogi Nauki i Tekhn., All-Union Inst. for Sci. and Techn. Information (VINITI), Akad. Nauk SSSR, Moscow, (1965), 165–212. | MR
[2] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two. World Sci., 1996. | MR | Zbl
[3] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23, 2 (1978), 297–304. | DOI | MR
[4] Kurbatova, I. N.: HP-mappings of H-spaces. Ukr. Geom. Sb., Kharkov 27 (1984), 75–82. | MR | Zbl
[5] Lakomá, L., Jukl, M.: The decomposition of tensor spaces with almost complex structure. Suppl. Rend. Circ. Mat. (Palermo) 72, II (2004), 145–150. | MR | Zbl
[6] Al Lamy, R. J. K., Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42, 5 (2006), 291–299. | MR
[7] Mikeš, J.: Geodesic mappings onto semisymmetric spaces. Russ. Math. 38, 2 (1994), 35–41, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. 381, 2 (1994), 37–43. | MR
[8] Mikeš, J.: On special F-planar mappings of affine-connected spaces. Vestn. Mosk. Univ. 3 (1994), 18–24. | MR
[9] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78, 3 (1996), 311–333. | DOI | MR
[10] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 3 (1998), 1334–1353. | MR
[11] Mikeš, J., Chodorová, M.: On concircular and torse-forming vector fields on compact manifolds. Acta Acad. Paedagog. Nyregyházi., Mat.-Inform. Közl. (2010). | MR | Zbl
[12] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces. Suppl. Rend. Circ. Mat. (Palermo) 69, II (2002), 181–186. | MR | Zbl
[13] Mikeš, J., Radulović, Ž, Haddad, M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces. Russ. Math. 40, 10 (1996), 28–32, transl. from Izv. Vyssh. Uchebn., Mat 1996, 10(413), 30–35. | MR
[14] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of spaces of affine connection. Sov. Math. 27, 1 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1983, 1(248), 55–61. | MR
[15] Mikeš, J., Starko, G. A.: K-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Circ. Mat. di Palermo, Suppl. Rend. Circ. Mat. (Palermo) 46, II (1997), 123–127. | MR
[16] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacký Univ. Publ., Olomouc, 2009. | MR | Zbl
[17] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | MR | Zbl
[18] Petrov, A. Z.: Simulation of physical fields. In: Gravitation and the Theory of Relativity, 4–5, Kazan’ State Univ., Kazan, 1968, 7–21. | MR
[19] Sakaguchi, T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure. Hokkaido Math. J. 3 (1974), 203–212. | MR | Zbl
[20] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979. | MR | Zbl
[21] Sinyukov, N. S.: Almost geodesic mappings of affinely connected and Riemannian spaces. J. Sov. Math. 25 (1984), 1235–1249. | DOI
[22] Sobchuk, V. S., Mikeš, J., Pokorná, O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces. Novi Sad J. Math. 29, 3 (1999), 309–312. | MR
[23] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1965. | MR | Zbl
[24] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies 32, Princeton University Press, Princeton, 1953. | MR | Zbl