Holomorphically projective mappings of compact semisymmetric manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 49-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider holomorphically projective mappings from the compact semisymmetric spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that in this case space $A_n$ is holomorphically projective flat and $\bar{K}_n$ is space with constant holomorphic curvature. These results are the generalization of results by T. Sakaguchi, J. Mikeš, V. V. Domashev, N. S. Sinyukov, E. N. Sinyukova, M. Škodová, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
In this paper we consider holomorphically projective mappings from the compact semisymmetric spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that in this case space $A_n$ is holomorphically projective flat and $\bar{K}_n$ is space with constant holomorphic curvature. These results are the generalization of results by T. Sakaguchi, J. Mikeš, V. V. Domashev, N. S. Sinyukov, E. N. Sinyukova, M. Škodová, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
Classification : 53B20, 53B30, 53B35
Keywords: Holomorphically projective mapping; equiaffine space; affine-connected space; semisymmetric space; Riemannian space; Kählerian space
@article{AUPO_2010_49_1_a4,
     author = {Al Lamy, Raad J. K.},
     title = {Holomorphically projective mappings of compact semisymmetric manifolds},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {49--53},
     year = {2010},
     volume = {49},
     number = {1},
     mrnumber = {2797522},
     zbl = {1228.53018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/}
}
TY  - JOUR
AU  - Al Lamy, Raad J. K.
TI  - Holomorphically projective mappings of compact semisymmetric manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 49
EP  - 53
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/
LA  - en
ID  - AUPO_2010_49_1_a4
ER  - 
%0 Journal Article
%A Al Lamy, Raad J. K.
%T Holomorphically projective mappings of compact semisymmetric manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 49-53
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/
%G en
%F AUPO_2010_49_1_a4
Al Lamy, Raad J. K. Holomorphically projective mappings of compact semisymmetric manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 49-53. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a4/

[1] Beklemishev, D. V.: Differential geometry of spaces with almost complex structure. Geometria. Itogi Nauki i Tekhn., All-Union Inst. for Sci. and Techn. Information (VINITI), Akad. Nauk SSSR, Moscow, (1965), 165–212. | MR

[2] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two. World Sci., 1996. | MR | Zbl

[3] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23, 2 (1978), 297–304. | DOI | MR

[4] Kurbatova, I. N.: HP-mappings of H-spaces. Ukr. Geom. Sb., Kharkov 27 (1984), 75–82. | MR | Zbl

[5] Lakomá, L., Jukl, M.: The decomposition of tensor spaces with almost complex structure. Suppl. Rend. Circ. Mat. (Palermo) 72, II (2004), 145–150. | MR | Zbl

[6] Al Lamy, R. J. K., Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42, 5 (2006), 291–299. | MR

[7] Mikeš, J.: Geodesic mappings onto semisymmetric spaces. Russ. Math. 38, 2 (1994), 35–41, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. 381, 2 (1994), 37–43. | MR

[8] Mikeš, J.: On special F-planar mappings of affine-connected spaces. Vestn. Mosk. Univ. 3 (1994), 18–24. | MR

[9] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78, 3 (1996), 311–333. | DOI | MR

[10] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 3 (1998), 1334–1353. | MR

[11] Mikeš, J., Chodorová, M.: On concircular and torse-forming vector fields on compact manifolds. Acta Acad. Paedagog. Nyregyházi., Mat.-Inform. Közl. (2010). | MR | Zbl

[12] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces. Suppl. Rend. Circ. Mat. (Palermo) 69, II (2002), 181–186. | MR | Zbl

[13] Mikeš, J., Radulović, Ž, Haddad, M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces. Russ. Math. 40, 10 (1996), 28–32, transl. from Izv. Vyssh. Uchebn., Mat 1996, 10(413), 30–35. | MR

[14] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of spaces of affine connection. Sov. Math. 27, 1 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1983, 1(248), 55–61. | MR

[15] Mikeš, J., Starko, G. A.: K-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Circ. Mat. di Palermo, Suppl. Rend. Circ. Mat. (Palermo) 46, II (1997), 123–127. | MR

[16] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacký Univ. Publ., Olomouc, 2009. | MR | Zbl

[17] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | MR | Zbl

[18] Petrov, A. Z.: Simulation of physical fields. In: Gravitation and the Theory of Relativity, 4–5, Kazan’ State Univ., Kazan, 1968, 7–21. | MR

[19] Sakaguchi, T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure. Hokkaido Math. J. 3 (1974), 203–212. | MR | Zbl

[20] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979. | MR | Zbl

[21] Sinyukov, N. S.: Almost geodesic mappings of affinely connected and Riemannian spaces. J. Sov. Math. 25 (1984), 1235–1249. | DOI

[22] Sobchuk, V. S., Mikeš, J., Pokorná, O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces. Novi Sad J. Math. 29, 3 (1999), 309–312. | MR

[23] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1965. | MR | Zbl

[24] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies 32, Princeton University Press, Princeton, 1953. | MR | Zbl