Some common fixed point theorems in normed linear spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 17-24 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq [14].
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq [14].
Classification : 47H10, 54H25
Keywords: Common fixed point; contractive condition; Mann and Ishikawa iterations
@article{AUPO_2010_49_1_a1,
     author = {Bosede, Alfred Olufemi},
     title = {Some common fixed point theorems in normed linear spaces},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {17--24},
     year = {2010},
     volume = {49},
     number = {1},
     mrnumber = {2797519},
     zbl = {05978034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/}
}
TY  - JOUR
AU  - Bosede, Alfred Olufemi
TI  - Some common fixed point theorems in normed linear spaces
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 17
EP  - 24
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/
LA  - en
ID  - AUPO_2010_49_1_a1
ER  - 
%0 Journal Article
%A Bosede, Alfred Olufemi
%T Some common fixed point theorems in normed linear spaces
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 17-24
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/
%G en
%F AUPO_2010_49_1_a1
Bosede, Alfred Olufemi. Some common fixed point theorems in normed linear spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/

[1] Berinde, V.: A priori and a posteriori error estimates for a class of $\varphi $-contractions. Bulletins for Applied and Computing Math. (1999), 183–192.

[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. | MR | Zbl

[3] Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators. Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. | MR | Zbl

[4] Chatterjea, S. K.: Fixed point theorems. C. R. Acad. Bulgare Sci. 25 (1972), 727–730. | MR | Zbl

[5] Das, G., Debata, J. P.: Fixed points of Quasi-nonexpansive mappings. Indian J. Pure and Appl. Math. 17 (1986), 1263–1269. | MR

[6] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR | Zbl

[7] Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71–76. | MR | Zbl

[8] Kannan, R.: Some results on fixed points III. Fund. Math. 70 (1971), 169–177. | MR | Zbl

[9] Kannan, R.: Construction of fixed points of class of nonlinear mapppings. J. Math. Anal. Appl. 41 (1973), 430–438. | DOI | MR

[10] Liu, L. S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 1 (1995), 114–125. | DOI | MR | Zbl

[11] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR

[12] Osilike, M. O.: Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings. Indian J. Pure Appl. Math. 20, 12 (1999), 1229–1234. | MR | Zbl

[13] Osilike, M. O.: Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 14/15 (1995/96), 17–29. | MR

[14] Rafiq, A.: Common fixed points of quasi-contractive-operators. General Mathematics 16, 2 (2008), 49–58. | MR | Zbl

[15] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. | DOI | MR | Zbl

[16] Rhoades, B. E.: Comments on two fixed point iteration method. J. Math. Anal. Appl. 50, 2 (1976), 741–750. | DOI | MR

[17] Rhoades, B. E.: A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257–290. | DOI | MR | Zbl

[18] Rus, I. A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca, 2001. | MR | Zbl

[19] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory: 1950-2000, Romanian Contributions. House of the Book of Science, Cluj-Napoca, 2002. | MR | Zbl

[20] Takahashi, W.: Iterative methods for approximation of fixed points and their applications. J. Oper. Res. Soc. Jpn. 43, 1 (2000), 87–108. | DOI | MR | Zbl

[21] Takahashi, W., Tamura, T.: Convergence theorems for a pair of nonexpansive mappings. J. Convex Analysis 5, 1 (1995), 45–58. | MR

[22] Xu, Y.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224 (1998), 91–101. | DOI

[23] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. (Basel) 23 (1972), 292–298. | DOI | MR | Zbl

[24] Zeidler, E.: Nonlinear Functional Analysis and its Applications, I. Fixed Point Theorems, Springer, New York, 1986. | MR | Zbl