Keywords: Common fixed point; contractive condition; Mann and Ishikawa iterations
@article{AUPO_2010_49_1_a1,
author = {Bosede, Alfred Olufemi},
title = {Some common fixed point theorems in normed linear spaces},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {17--24},
year = {2010},
volume = {49},
number = {1},
mrnumber = {2797519},
zbl = {05978034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/}
}
TY - JOUR AU - Bosede, Alfred Olufemi TI - Some common fixed point theorems in normed linear spaces JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 17 EP - 24 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/ LA - en ID - AUPO_2010_49_1_a1 ER -
Bosede, Alfred Olufemi. Some common fixed point theorems in normed linear spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 17-24. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a1/
[1] Berinde, V.: A priori and a posteriori error estimates for a class of $\varphi $-contractions. Bulletins for Applied and Computing Math. (1999), 183–192.
[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. | MR | Zbl
[3] Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators. Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. | MR | Zbl
[4] Chatterjea, S. K.: Fixed point theorems. C. R. Acad. Bulgare Sci. 25 (1972), 727–730. | MR | Zbl
[5] Das, G., Debata, J. P.: Fixed points of Quasi-nonexpansive mappings. Indian J. Pure and Appl. Math. 17 (1986), 1263–1269. | MR
[6] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | DOI | MR | Zbl
[7] Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71–76. | MR | Zbl
[8] Kannan, R.: Some results on fixed points III. Fund. Math. 70 (1971), 169–177. | MR | Zbl
[9] Kannan, R.: Construction of fixed points of class of nonlinear mapppings. J. Math. Anal. Appl. 41 (1973), 430–438. | DOI | MR
[10] Liu, L. S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 1 (1995), 114–125. | DOI | MR | Zbl
[11] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. | DOI | MR
[12] Osilike, M. O.: Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings. Indian J. Pure Appl. Math. 20, 12 (1999), 1229–1234. | MR | Zbl
[13] Osilike, M. O.: Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 14/15 (1995/96), 17–29. | MR
[14] Rafiq, A.: Common fixed points of quasi-contractive-operators. General Mathematics 16, 2 (2008), 49–58. | MR | Zbl
[15] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. | DOI | MR | Zbl
[16] Rhoades, B. E.: Comments on two fixed point iteration method. J. Math. Anal. Appl. 50, 2 (1976), 741–750. | DOI | MR
[17] Rhoades, B. E.: A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257–290. | DOI | MR | Zbl
[18] Rus, I. A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca, 2001. | MR | Zbl
[19] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory: 1950-2000, Romanian Contributions. House of the Book of Science, Cluj-Napoca, 2002. | MR | Zbl
[20] Takahashi, W.: Iterative methods for approximation of fixed points and their applications. J. Oper. Res. Soc. Jpn. 43, 1 (2000), 87–108. | DOI | MR | Zbl
[21] Takahashi, W., Tamura, T.: Convergence theorems for a pair of nonexpansive mappings. J. Convex Analysis 5, 1 (1995), 45–58. | MR
[22] Xu, Y.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224 (1998), 91–101. | DOI
[23] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. (Basel) 23 (1972), 292–298. | DOI | MR | Zbl
[24] Zeidler, E.: Nonlinear Functional Analysis and its Applications, I. Fixed Point Theorems, Springer, New York, 1986. | MR | Zbl