On fourth-order boundary-value problems
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 5-16 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
Classification : 34B15, 34G20, 47H10
Keywords: Boundary-value problems; set-valued map; fixed point; selection
@article{AUPO_2010_49_1_a0,
     author = {Aitalioubrahim, Myelkebir},
     title = {On fourth-order boundary-value problems},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {5--16},
     year = {2010},
     volume = {49},
     number = {1},
     mrnumber = {2797518},
     zbl = {1236.34087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a0/}
}
TY  - JOUR
AU  - Aitalioubrahim, Myelkebir
TI  - On fourth-order boundary-value problems
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 5
EP  - 16
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a0/
LA  - en
ID  - AUPO_2010_49_1_a0
ER  - 
%0 Journal Article
%A Aitalioubrahim, Myelkebir
%T On fourth-order boundary-value problems
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 5-16
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a0/
%G en
%F AUPO_2010_49_1_a0
Aitalioubrahim, Myelkebir. On fourth-order boundary-value problems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/AUPO_2010_49_1_a0/

[1] Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116 (1986), 415–426. | DOI | MR | Zbl

[2] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. | MR | Zbl

[3] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580 Spriger, New York–Berlin–Heidelberg, 1977. | DOI | MR | Zbl

[4] Covitz, H., Nadler, S. B. Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | DOI | MR

[5] Frigon, M., Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. Sci. Paris Ser. I Math. 310 (1990), 819–822. | MR

[6] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997. | MR

[7] Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 13 (1965), 781–786. | MR | Zbl

[8] Liu, Y.: Multiple positive solutions to fourth-order singular boundary-value problems in abstract spaces. Electron. J. Differential Equations 120 (2004), 1–13. | MR | Zbl

[9] Martelli, M.: A Rothe’s type theorem for noncompact acyclic-valued map. Boll. Un. Mat. Ital. 11 (1975), 70–76. | MR

[10] Smart, D. R.: Fixed Point Theorems. Cambridge Univ. Press, Cambridge, 1974. | MR | Zbl

[11] Yang, Y.: Fourth-order two-point boundary value problems. Proc. Amer. Math. Soc. 104 (1988), 175–180. | DOI | MR | Zbl

[12] Zhu, Q.: On the solution set of differential inclusions in Banach spaces. J. Differential Equations 93, 2 (1991), 213–237. | DOI | MR