Classes of filters in generalizations of commutative fuzzy structures
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 93-107 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.
Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.
Classification : 03G25, 06D35, 06F05
Keywords: Residuated $\ell $-monoid; deductive system; $\mathit {BL}$-algebra; $\mathit {MV}$-algebra; Heyting algebra; filter
@article{AUPO_2009_48_1_a8,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}alounov\'a, Dana},
     title = {Classes of filters in generalizations of commutative fuzzy structures},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {93--107},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641951},
     zbl = {1203.03091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a8/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
AU  - Šalounová, Dana
TI  - Classes of filters in generalizations of commutative fuzzy structures
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 93
EP  - 107
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a8/
LA  - en
ID  - AUPO_2009_48_1_a8
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%A Šalounová, Dana
%T Classes of filters in generalizations of commutative fuzzy structures
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 93-107
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a8/
%G en
%F AUPO_2009_48_1_a8
Rachůnek, Jiří; Šalounová, Dana. Classes of filters in generalizations of commutative fuzzy structures. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a8/

[1] Balbes, R., Dwinger, P.: Distributive Lattices. Univ. of Missouri Press, Columbia, Missouri, 1974. | MR | Zbl

[2] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000. | MR

[3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell $-monoids. Discrete Mathematics 306 (2006), 1317–1326. | MR | Zbl

[4] Font, J. M., Rodriguez, A. J., Torrens, A.: Wajsberg algebras. Stochastica 8 (1984), 5–31. | MR | Zbl

[5] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht, 1998. | MR

[6] Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2 (1998), 124–128.

[7] Haveshki, M., Saeid, A. B., Eslami, E.: Some types of filters in $\mathit {BL}$-algebras. Soft Comput 10 (2006), 657–664.

[8] Iorgulescu, A.: Classes of BCK algebras – Part I. Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33. | MR

[9] Iorgulescu, A.: Classes of BCK algebras – Part III. Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37. | MR

[10] Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56. | MR | Zbl

[11] Kondo, M., Dudek, W. A.: Filter theory of $\mathit {BL}$-algebras. Soft Comput. 12 (2008), 419–423.

[12] Rachůnek, J.: $\mathit {MV}$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohemica 123 (1998), 437–441. | MR

[13] Rachůnek, J.: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohemica 126 (2001), 561–569. | MR

[14] Rachůnek, J., Šalounová, D.: Boolean deductive systems of bounded commutative residuated $\ell $-monoids. Contrib. Gen. Algebra 16 (2005), 199–208. | Zbl

[15] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated $\ell $-monoids. Czechoslovak Math. J. 57 (2007), 395–406. | MR | Zbl

[16] Rachůnek, J., Slezák, V.: Negation in bounded commutative $DR\ell $-monoids. Czechoslovak Math. J. 56 (2006), 755–763. | Zbl

[17] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223–233. | MR | Zbl

[18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74. | MR | Zbl

[19] Turunen, E.: Boolean deductive systems of $BL$-algebras. Arch. Math. Logic 40 (2001), 467–473. | MR | Zbl