Linearization regions for a confidence ellipsoid in singular nonlinear regression models
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 73-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.
A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.
Classification : 62F10, 62J05
Keywords: Nonlinear regression model; confidence region; singularity
@article{AUPO_2009_48_1_a6,
     author = {Kub\'a\v{c}ek, Lubom{\'\i}r and Tesa\v{r}{\'\i}kov\'a, Eva},
     title = {Linearization regions for a confidence ellipsoid in singular nonlinear regression models},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {73--82},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641949},
     zbl = {1191.62119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a6/}
}
TY  - JOUR
AU  - Kubáček, Lubomír
AU  - Tesaříková, Eva
TI  - Linearization regions for a confidence ellipsoid in singular nonlinear regression models
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 73
EP  - 82
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a6/
LA  - en
ID  - AUPO_2009_48_1_a6
ER  - 
%0 Journal Article
%A Kubáček, Lubomír
%A Tesaříková, Eva
%T Linearization regions for a confidence ellipsoid in singular nonlinear regression models
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 73-82
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a6/
%G en
%F AUPO_2009_48_1_a6
Kubáček, Lubomír; Tesaříková, Eva. Linearization regions for a confidence ellipsoid in singular nonlinear regression models. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a6/

[1] Bates, D. M., Watts, D. G.: Relative curvature measures of nonlinearity. J. Roy. Stat. Soc. B 42 (1980), 1–25. | MR | Zbl

[2] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models, Regularity and Singularities. Academia, Praha, 2007.

[3] Kubáček, L., Kubáčková, L.: Regression models with a weak nonlinearity. Technical report Nr. 1998.1, Universität Stuttgart, 1998, 1–67.

[4] Kubáček, L., Kubáčková, L.: Statistics and Metrology. Vyd. Univ. Palackého, Olomouc, 2000 (in Czech).

[5] Kubáček, L., Tesaříková, E.: Linearization region for confidence ellispoids. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 47 (2008), 101–113. | MR

[6] Pázman, A.: Nonlinear Statistical Models. Kluwer Academic Publisher, Dordrecht–Boston–London and Ister Science Press, Bratislava, 1993. | MR

[7] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and its Applications. J. Wiley, New York–London–Sydney–Toronto, 1971. | MR | Zbl

[8] Scheffé, H.: The Analysis of Variance. J. Wiley, New York–London–Sydney, 1967 (fifth printing). | MR