Keywords: Aitchison geometry on the simplex; oordinates; ellipse
@article{AUPO_2009_48_1_a4,
author = {Hron, Karel},
title = {Analytical representation of ellipses in the {Aitchison} geometry and its application},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {53--60},
year = {2009},
volume = {48},
number = {1},
mrnumber = {2641947},
zbl = {05734887},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a4/}
}
TY - JOUR AU - Hron, Karel TI - Analytical representation of ellipses in the Aitchison geometry and its application JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2009 SP - 53 EP - 60 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a4/ LA - en ID - AUPO_2009_48_1_a4 ER -
%0 Journal Article %A Hron, Karel %T Analytical representation of ellipses in the Aitchison geometry and its application %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2009 %P 53-60 %V 48 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a4/ %G en %F AUPO_2009_48_1_a4
Hron, Karel. Analytical representation of ellipses in the Aitchison geometry and its application. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 53-60. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a4/
[1] Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986. | MR | Zbl
[2] Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392. | MR | Zbl
[3] Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V.: Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264, 2006. | Zbl
[4] Daunis-i-Estadella, J., Barceló-Vidal, C., Buccianti, A.: Exploratory compositional data analysis. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., (eds): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 161–174. | DOI | Zbl
[5] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueraz, G., Barceló-Vidal, C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35 (2003), 279–300. | DOI | MR
[6] Egozcue, J. J., Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data analysis. Math. Geol. 37 (2005), 795–828. | DOI | MR | Zbl
[7] Egozcue, J. J., Pawlowsky-Glahn, V.: Simplicial geometry for compositional data. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., (eds): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 145–160. | DOI | Zbl
[8] Filzmoser, P., Hron, K.: Outlier detection for compositional data using robust methods. Math. Geosci. 40 (2008), 233–248. | DOI | Zbl
[9] Filzmoser, P., Hron, K.: Correlation analysis for compositional data. Math. Geosci., to appear. | Zbl
[10] Filzmoser, P., Hron, K., Reimann, C.: Principal component analysis for compositional data with outliers. Environmetrics, to appear.
[11] Filzmoser, P., Hron, K., Reimann, C., Garrett, R.: Robust factor analysis for compositional data. Computers & Geosciences, to appear.
[12] Fišerová, E., Hron, K.: Total least squares solution for compositional data using linear models. Journal of Applied Statistics, to appear.
[13] Jukl, M.: Linear forms on free modules over certain local ring. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 110 (1993), 49–62. | MR | Zbl
[14] Jukl, M.: Inertial law of quadratic forms on modules over plural algebra. Mathematica Bohemica 3 (1995), 255–263. | MR | Zbl
[15] Kendall, M. G., Stuart, A.: The advanced theory of statistics, vol 2. Charles Griffin, London, 1967.
[16] Kubáček, L., Kubáčková, L.: One of the calibration problems. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 36 (1997), 117–130. | MR
[17] Pawlowsky-Glahn, V., Egozcue, J. J., Tolosana-Delgado, J.: Lecture notes on compositional data analysis. http://hdl.handle.net/10256/297, 2007.
[18] Pearson, K.: Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London 60 (1897), 489–502. | DOI
[19] Schuermans, M., Markovsky, I., Wentzell, P. D., Van Huffel, S.: On the equivalence between total least squares and maximum likelihood PCA. Analytica Chimica Acta 544 (2005), 254–267. | DOI