Basic pseudorings
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 25-31 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.
The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.
Classification : 03G25, 06C15, 06D35
Keywords: Basic algebra; basic pseudoring; orthomodular lattice
@article{AUPO_2009_48_1_a2,
     author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav},
     title = {Basic pseudorings},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {25--31},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641945},
     zbl = {1203.06012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a2/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Kolařík, Miroslav
TI  - Basic pseudorings
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 25
EP  - 31
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a2/
LA  - en
ID  - AUPO_2009_48_1_a2
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Kolařík, Miroslav
%T Basic pseudorings
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 25-31
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a2/
%G en
%F AUPO_2009_48_1_a2
Chajda, Ivan; Kolařík, Miroslav. Basic pseudorings. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a2/

[1] Beran, L.: Orthomodular Lattices. Reidel Publ., Dordrecht, 1985. | MR | Zbl

[2] Birkhoff, G.: Lattice Theory. Publ. AMS, Providence, 1967. | MR | Zbl

[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo, 2007. | MR | Zbl

[4] Chajda, I., Kolařík, M.: Independence of axiom system of basic algebras. Soft Computing 13, 1 (2009), 41–43. | Zbl

[5] Chajda, I., Länger, H.: Ring-like structures corresponding to MV-algebras via symmetrical difference. Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 213 (2004), 33–41. | MR

[6] Dorfer, G., Dvurečenskij, A., Länger H.: Symmetric difference in orthomodular lattices. Math. Slovaca 46 (1996), 435–444. | MR

[7] Dorninger, D., Länger, H., Maczyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215–232. | MR

[8] Dorninger, D., Länger, H., Maczyński, M.: On ring-like structures occuring in axiomatic quantum mechanics. Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 206 (1997), 279–289. | MR

[9] Dorninger, D., Länger, H., Maczyński, M.: Lattice properties of ring-like quantum logics. Intern. J. of Theor. Physics 39 (2000), 1015–1026. | MR

[10] Shang, Y.: Ring-like structures corresponding to pseudo MV-algebras. Soft Computing 13, 1 (2009), 71–76. | Zbl