Metrizability of connections on two-manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 157-170 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
Classification : 53B05, 53B20, 53C05
Keywords: Manifold; linear connection; metric connection; pseudo-Riemannian geometry
@article{AUPO_2009_48_1_a13,
     author = {Van\v{z}urov\'a, Alena and \v{Z}\'a\v{c}kov\'a, Petra},
     title = {Metrizability of connections on two-manifolds},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {157--170},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641956},
     zbl = {1195.53023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/}
}
TY  - JOUR
AU  - Vanžurová, Alena
AU  - Žáčková, Petra
TI  - Metrizability of connections on two-manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 157
EP  - 170
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/
LA  - en
ID  - AUPO_2009_48_1_a13
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%A Žáčková, Petra
%T Metrizability of connections on two-manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 157-170
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/
%G en
%F AUPO_2009_48_1_a13
Vanžurová, Alena; Žáčková, Petra. Metrizability of connections on two-manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 157-170. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/

[1] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon). | MR

[2] Cocos, M.: A note on symmetric connections. J. Geom. Phys. 56 (2006), 337–343. | MR | Zbl

[3] do Carmo, M. P.: Riemannian Geometry. Birkhäuser, Boston–Basel–Berlin, 1992. | MR | Zbl

[4] Cheng, K. S, Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.

[5] Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. AMS 50 (1941), 71–128. | MR | Zbl

[6] Dodson, C. T. J., Poston, T.: Tensor Geometry. The Geometric Viewpoint and its Uses. Spriger, New York–Berlin–Heidelberg, 1991 (second editon). | MR | Zbl

[7] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.

[8] Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin–Heidelberg–New York, 2005. | MR | Zbl

[9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991.

[10] Kolář, I., Slovák, J., Michor, P. W.: Natural Operations in Differential Geometry. Springer, Berlin–Heidelberg–New York, 1993. | MR

[11] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. | MR | Zbl

[12] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle. Wiley, New York–London–Sydney, 1975. | MR

[13] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic Mappings of Manifolds with Affine Connection. Palacký Univ. Publ., Olomouc, 2008. | MR | Zbl

[14] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Univ. Press, Cambridge, 1994. | MR

[15] Petrov, A. Z.: Einstein Spaces. Moscow, 1961 (in Russian). | MR

[16] Schmidt, B. G.: Conditions on a connection to be a metric connection. Commun. Math. Phys. 29 (1973), 55–59. | MR

[17] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Moscow, 1979 (in Russian). | MR | Zbl

[18] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19, 6 (1991), 529–532.

[19] Vanžurová, A.: Linear connections on two-manifolds and SODEs. Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332.

[20] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Archivum Mathematicum (Brno) 44 (2008), 339–348. | MR

[21] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras. Acta Physica Debrecina 42 (2008), 39–48.

[22] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.

[23] Wolf, J. A.: Spaces of Constant Curvature. Berkley, California, 1972. | MR