Metrizability of connections on two-manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 157-170
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
We contribute to the reverse of the Fundamental Theorem of Riemannian geometry: if a symmetric linear connection on a manifold is given, find non-degenerate metrics compatible with the connection (locally or globally) if there are any. The problem is not easy in general. For nowhere flat $2$-manifolds, we formulate necessary and sufficient metrizability conditions. In the favourable case, we describe all compatible metrics in terms of the Ricci tensor. We propose an application in the calculus of variations.
Classification :
53B05, 53B20, 53C05
Keywords: Manifold; linear connection; metric connection; pseudo-Riemannian geometry
Keywords: Manifold; linear connection; metric connection; pseudo-Riemannian geometry
@article{AUPO_2009_48_1_a13,
author = {Van\v{z}urov\'a, Alena and \v{Z}\'a\v{c}kov\'a, Petra},
title = {Metrizability of connections on two-manifolds},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {157--170},
year = {2009},
volume = {48},
number = {1},
mrnumber = {2641956},
zbl = {1195.53023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/}
}
TY - JOUR AU - Vanžurová, Alena AU - Žáčková, Petra TI - Metrizability of connections on two-manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2009 SP - 157 EP - 170 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/ LA - en ID - AUPO_2009_48_1_a13 ER -
%0 Journal Article %A Vanžurová, Alena %A Žáčková, Petra %T Metrizability of connections on two-manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2009 %P 157-170 %V 48 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/ %G en %F AUPO_2009_48_1_a13
Vanžurová, Alena; Žáčková, Petra. Metrizability of connections on two-manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 157-170. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/