Keywords: Manifold; linear connection; metric connection; pseudo-Riemannian geometry
@article{AUPO_2009_48_1_a13,
author = {Van\v{z}urov\'a, Alena and \v{Z}\'a\v{c}kov\'a, Petra},
title = {Metrizability of connections on two-manifolds},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {157--170},
year = {2009},
volume = {48},
number = {1},
mrnumber = {2641956},
zbl = {1195.53023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/}
}
TY - JOUR AU - Vanžurová, Alena AU - Žáčková, Petra TI - Metrizability of connections on two-manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2009 SP - 157 EP - 170 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/ LA - en ID - AUPO_2009_48_1_a13 ER -
%0 Journal Article %A Vanžurová, Alena %A Žáčková, Petra %T Metrizability of connections on two-manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2009 %P 157-170 %V 48 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/ %G en %F AUPO_2009_48_1_a13
Vanžurová, Alena; Žáčková, Petra. Metrizability of connections on two-manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 157-170. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a13/
[1] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, Amsterdam–London–New York–Oxford–Paris–Tokyo, 2003 (revised second editon). | MR
[2] Cocos, M.: A note on symmetric connections. J. Geom. Phys. 56 (2006), 337–343. | MR | Zbl
[3] do Carmo, M. P.: Riemannian Geometry. Birkhäuser, Boston–Basel–Berlin, 1992. | MR | Zbl
[4] Cheng, K. S, Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.
[5] Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. AMS 50 (1941), 71–128. | MR | Zbl
[6] Dodson, C. T. J., Poston, T.: Tensor Geometry. The Geometric Viewpoint and its Uses. Spriger, New York–Berlin–Heidelberg, 1991 (second editon). | MR | Zbl
[7] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[8] Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin–Heidelberg–New York, 2005. | MR | Zbl
[9] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley, New York–Chichester–Brisbane–Toronto–Singapore, 1991.
[10] Kolář, I., Slovák, J., Michor, P. W.: Natural Operations in Differential Geometry. Springer, Berlin–Heidelberg–New York, 1993. | MR
[11] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. | MR | Zbl
[12] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle. Wiley, New York–London–Sydney, 1975. | MR
[13] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic Mappings of Manifolds with Affine Connection. Palacký Univ. Publ., Olomouc, 2008. | MR | Zbl
[14] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Univ. Press, Cambridge, 1994. | MR
[15] Petrov, A. Z.: Einstein Spaces. Moscow, 1961 (in Russian). | MR
[16] Schmidt, B. G.: Conditions on a connection to be a metric connection. Commun. Math. Phys. 29 (1973), 55–59. | MR
[17] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Moscow, 1979 (in Russian). | MR | Zbl
[18] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19, 6 (1991), 529–532.
[19] Vanžurová, A.: Linear connections on two-manifolds and SODEs. Proc. Conf. Aplimat 2007, Bratislava, Slov. Rep., Part II, 2007, 325–332.
[20] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Archivum Mathematicum (Brno) 44 (2008), 339–348. | MR
[21] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras. Acta Physica Debrecina 42 (2008), 39–48.
[22] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
[23] Wolf, J. A.: Spaces of Constant Curvature. Berkley, California, 1972. | MR