Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive mappings
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 139-152 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, weak and strong convergence of finite step iteration sequences to a common fixed point for a pair of a finite family of nonexpansive mappings and a finite family of asymptotically nonexpansive mappings in a nonempty closed convex subset of uniformly convex Banach spaces are presented.
In this paper, weak and strong convergence of finite step iteration sequences to a common fixed point for a pair of a finite family of nonexpansive mappings and a finite family of asymptotically nonexpansive mappings in a nonempty closed convex subset of uniformly convex Banach spaces are presented.
Classification : 47H09, 47H10, 47J25
Keywords: Nonexpansive mapping; asymptotically nonexpansive mapping; common fixed point; finite-step iterative sequence
@article{AUPO_2009_48_1_a11,
     author = {Sitthikul, Kittipong and Saejung, Satit},
     title = {Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive mappings},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {139--152},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641954},
     zbl = {1192.47063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a11/}
}
TY  - JOUR
AU  - Sitthikul, Kittipong
AU  - Saejung, Satit
TI  - Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive mappings
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 139
EP  - 152
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a11/
LA  - en
ID  - AUPO_2009_48_1_a11
ER  - 
%0 Journal Article
%A Sitthikul, Kittipong
%A Saejung, Satit
%T Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive mappings
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 139-152
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a11/
%G en
%F AUPO_2009_48_1_a11
Sitthikul, Kittipong; Saejung, Satit. Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive mappings. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 139-152. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a11/

[1] Chidume, C. E., Ali, B.: Approximation of common fixed points for finite families of nonself asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 326, 2 (2007), 960–973. | MR | Zbl

[2] Chidume, C. E., Ali, B.: Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 330, 1 (2007), 377–387. | MR | Zbl

[3] Cho, Y. J., Zhou, H., Guo, G.: Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Comput. Math. Appl. 47, 4-5 (2004), 707–717. | MR | Zbl

[4] Clarkson, J. A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40, 3 (1936), 396–414. | MR | Zbl

[5] García-Falset, J., Kaczor, W., Kuczumow, T., Reich, S.: Weak convergence theorems for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal., Ser. A: Theory Methods 43, 3 (2001), 377–401. | MR

[6] Goebel, K., Kirk, W. A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35 (1972), 171–174. | MR | Zbl

[7] Gornicki, J.: Weak and strong convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces. Comment. Math. Univ. Carolin 30 (1989), 249–252. | MR

[8] Ishikawa, S.: Fixed points by new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. | MR

[9] Liu, Z., Agarwal, R. P., Feng, C., Kang, S. M.: Weak and strong convergence theorems of common fixed points for a pair of nonexpansive and asymptotically nonexpansive mappings. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 44 (2005), 83–96. | MR | Zbl

[10] Liu, Z., Feng, C., Ume, J. S., Kang, S. M.: Weak and strong convergence for common fixed points of a pair of nonexpansive and asymptotically nonexpansive mappings. Taiwanese J. Math. 11, 1 (2007), 27–42. | MR | Zbl

[11] Mann, W. R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4 (1953), 506–510. | MR | Zbl

[12] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 591–597. | MR | Zbl

[13] Osilike, M. O., Aniagbosor, S. C.: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. Math. Comput. Modelling 32, 10 (2000), 1181–1191. | MR | Zbl

[14] Schu, J.: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158, 2 (1991), 407–413. | MR | Zbl

[15] Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Austral. Math. Soc. 43, 1 (1991), 153–159. | MR | Zbl

[16] Senter, H. F., Dotson, W. G., Jr: Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 44 (1974), 375–380. | MR | Zbl

[17] Tan, K. K., Xu, H. K.: Fixed point iteration processes for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 122 (1994), 733–739. | MR | Zbl

[18] Thakur, B. S., Jung, J. S.: Weak and strong convergence of multistep iteration for finite family of asymptotically nonexpansive mappings. Fixed Point Theory Appl., Art. ID 31056 (2007), 15 pp. | MR | Zbl

[19] Xu, B., Noor, M. A.: Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 267 (2002), 444–453. | MR | Zbl

[20] Zhou, Y. Y., Chang, S. S.: Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces. Numer. Funct. Anal. and Optimiz. 23 (2002), 911–921. | MR