Keywords: Conjugated algebras; basic algebra; section antitone involution; quasiorder
@article{AUPO_2009_48_1_a1,
author = {Chajda, Ivan},
title = {Conjugated algebras},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {17--23},
year = {2009},
volume = {48},
number = {1},
mrnumber = {2641944},
zbl = {1195.08002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a1/}
}
Chajda, Ivan. Conjugated algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a1/
[1] Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carol. 44 (2003), 577–585. | MR | Zbl
[2] Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras. Discuss. Math., Gener. Algebra and Appl. 24 (2004), 31–42. | MR | Zbl
[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo, 2007. | MR | Zbl
[4] Chajda, I., Kühr, J.: A non-associative generalization of MV-algebras. Math. Slovaca 57 (2007), 1–12. | MR | Zbl
[5] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000. | MR
[6] Halaš, R., Plojhar, L.: Weak MV-algebras. Math. Slovaca 58 (2008), 1–10. | MR | Zbl