Conjugated algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 17-23 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We generalize the correspondence between basic algebras and lattices with section antitone involutions to a more general case where no lattice properties are assumed. These algebras are called conjugated if this correspondence is one-to-one. We get conditions for the conjugary of such algebras and introduce the induced relation. Necessary and sufficient conditions are given to indicated when the induced relation is a quasiorder which has “nice properties", e.g. the unary operations are antitone involutions on the corresponding intervals.
We generalize the correspondence between basic algebras and lattices with section antitone involutions to a more general case where no lattice properties are assumed. These algebras are called conjugated if this correspondence is one-to-one. We get conditions for the conjugary of such algebras and introduce the induced relation. Necessary and sufficient conditions are given to indicated when the induced relation is a quasiorder which has “nice properties", e.g. the unary operations are antitone involutions on the corresponding intervals.
Classification : 06A12, 06D35, 08A40
Keywords: Conjugated algebras; basic algebra; section antitone involution; quasiorder
@article{AUPO_2009_48_1_a1,
     author = {Chajda, Ivan},
     title = {Conjugated algebras},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {17--23},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641944},
     zbl = {1195.08002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Conjugated algebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 17
EP  - 23
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a1/
LA  - en
ID  - AUPO_2009_48_1_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Conjugated algebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 17-23
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a1/
%G en
%F AUPO_2009_48_1_a1
Chajda, Ivan. Conjugated algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a1/

[1] Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carol. 44 (2003), 577–585. | MR | Zbl

[2] Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras. Discuss. Math., Gener. Algebra and Appl. 24 (2004), 31–42. | MR | Zbl

[3] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Heldermann Verlag, Lemgo, 2007. | MR | Zbl

[4] Chajda, I., Kühr, J.: A non-associative generalization of MV-algebras. Math. Slovaca 57 (2007), 1–12. | MR | Zbl

[5] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000. | MR

[6] Halaš, R., Plojhar, L.: Weak MV-algebras. Math. Slovaca 58 (2008), 1–10. | MR | Zbl