On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 7-16 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The measurable sets of pairs of intersecting non-isotropic straight lines of type $\beta $ and the corresponding densities with respect to the group of general similitudes and some its subgroups are described. Also some Crofton-type formulas are presented.
The measurable sets of pairs of intersecting non-isotropic straight lines of type $\beta $ and the corresponding densities with respect to the group of general similitudes and some its subgroups are described. Also some Crofton-type formulas are presented.
Classification : 28A75, 52A22, 53C65
Keywords: Simply isotropic space; density; measurability
@article{AUPO_2009_48_1_a0,
     author = {Borisov, Adrijan Varbanov and Spirova, Margarita Georgieva},
     title = {On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic~space},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {7--16},
     year = {2009},
     volume = {48},
     number = {1},
     mrnumber = {2641943},
     zbl = {1203.53072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a0/}
}
TY  - JOUR
AU  - Borisov, Adrijan Varbanov
AU  - Spirova, Margarita Georgieva
TI  - On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic space
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 7
EP  - 16
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a0/
LA  - en
ID  - AUPO_2009_48_1_a0
ER  - 
%0 Journal Article
%A Borisov, Adrijan Varbanov
%A Spirova, Margarita Georgieva
%T On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic space
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 7-16
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a0/
%G en
%F AUPO_2009_48_1_a0
Borisov, Adrijan Varbanov; Spirova, Margarita Georgieva. On the measurability of sets of pairs of intersecting nonisotropic straight lines of type beta in the simply isotropic space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 7-16. http://geodesic.mathdoc.fr/item/AUPO_2009_48_1_a0/

[1] Borisov, A.: Integral geometry in the Galilean plane. Research work qualifying for a degree full-professor, Sofia, 1998.

[2] Borisov, A. V., Spirova, M. G.: Crofton-type formulas relating sets of pairs of intersecting nonisotropic straight lines in the simply isotropic space. Tensor 67 (2006), 243–253. | MR

[3] Deltheil, R.: Sur la théorie des probabilité géométriques. Thése Ann. Fac. Sc. Univ. Toulouse 11 (1919), 1–65. | MR

[4] Drinfel’d, G. I.: On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc. 21 (1949), 47–57 (in Russian). | MR

[5] Drinfel’d, G. I., Lucenko, A. V.: On the measure of sets of geometric elements. Vest. Kharkov. Univ. 31, 3 (1964), 34–41 (in Russian). | MR

[6] Lucenko, A. V.: On the measure of sets of geometric elements and thear subsets. Ukrain. Geom. Sb. 1, 3 (1965), 39–57 (in Russian). | MR

[7] Sachs, H.: Ebene isotrope Geometrie. Friedr. Vieweg and Sohn, Braunschweig, 1987. | MR | Zbl

[8] Sachs, H.: Isotrope Geometrie des Raumes. Friedr. Vieweg and Sohn, Braunschweig–Wiesbaden, 1990. | MR | Zbl

[9] Santaló, L. A., London: Integral Geometry and Geometric Probability. Addison-Wesley, London, 1976. | MR

[10] Stoka, M. I.: Geometrie Integrala. Ed. Acad. RPR, Bucuresti, 1967. | MR

[11] Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsber. Österr. Akad. Wiss. Wien 150 (1941), 1–53. | MR

[12] Strubecker, K.: Differentialgeometrie des isotropen Raumes II, III, IV, V. Math. Z. 52 (1949), 525–573. | MR