Remark on properties of bases for additive logratio transformations of compositional data
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 77-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The statistical analysis of compositional data, multivariate data when all its components are strictly positive real numbers that carry only relative information and having a simplex as the sample space, is in the state-of-the-art devoted to represent compositions in orthonormal bases with respect to the geometry on the simplex and thus provide an isometric transformation of the data to an usual linear space, where standard statistical methods can be used (e.g. [2], [4], [5], [9]). However, in some applications from geosciences ([14]) or statistical aspects of multicriteria evaluation theory ([13]) it seems to be convenient to use another types of bases. This paper is devoted to describe its basic properties and illustrate the results on an example.
The statistical analysis of compositional data, multivariate data when all its components are strictly positive real numbers that carry only relative information and having a simplex as the sample space, is in the state-of-the-art devoted to represent compositions in orthonormal bases with respect to the geometry on the simplex and thus provide an isometric transformation of the data to an usual linear space, where standard statistical methods can be used (e.g. [2], [4], [5], [9]). However, in some applications from geosciences ([14]) or statistical aspects of multicriteria evaluation theory ([13]) it seems to be convenient to use another types of bases. This paper is devoted to describe its basic properties and illustrate the results on an example.
Classification : 15A03, 62H99
Keywords: Aitchison geometry on the simplex; bases on the simplex; additive logratio transformations
@article{AUPO_2008_47_1_a6,
     author = {Hron, Karel},
     title = {Remark on properties of bases for additive logratio transformations of compositional data},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {77--82},
     year = {2008},
     volume = {47},
     number = {1},
     mrnumber = {2482718},
     zbl = {1165.62325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a6/}
}
TY  - JOUR
AU  - Hron, Karel
TI  - Remark on properties of bases for additive logratio transformations of compositional data
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2008
SP  - 77
EP  - 82
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a6/
LA  - en
ID  - AUPO_2008_47_1_a6
ER  - 
%0 Journal Article
%A Hron, Karel
%T Remark on properties of bases for additive logratio transformations of compositional data
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2008
%P 77-82
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a6/
%G en
%F AUPO_2008_47_1_a6
Hron, Karel. Remark on properties of bases for additive logratio transformations of compositional data. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a6/

[1] Aitchison J.: The statistical analysis of compositional data. : Chapman and Hall, London. 1986. | MR

[2] Aitchison J., Greenacre M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392. | MR | Zbl

[3] Billheimer D.: Compositional data in biomedical research. In: Mateu-Figueras, G., Barceló-Vidal, C.: Compositional Data Analysis Workshop – CoDaWork’05, Proceedings, Universitat de Girona, 2005.

[4] Buccianti A., Pawlowsky-Glahn V.: New perspectives on water chemistry and compositional data analysis. Math. Geol. 37 (2005), 703–727. | Zbl

[5] Buccianti A., Mateu-Figueras G., Pawlowsky-Glahn V. (eds): Compositional data analysis in the geosciences: From theory to practice. : Geological Society, London, Special Publications. 264, 2006.

[6] Egozcue J. J., Pawlowsky-Glahn V., Mateu-Figueraz G., Barceló-Vidal C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35 (2003), 279–300. | MR

[7] Egozcue J. J., Pawlowsky-Glahn V.: Groups of parts and their balances in compositional data analysis. Math. Geol. 37 (2005), 795–828. | MR | Zbl

[8] Egozcue J. J., Pawlowsky-Glahn V.: Simplicial geometry for compositional data. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 145–160. | Zbl

[9] Filzmoser P., Hron K.: Outlier detection for compositional data using robust methods. Math. Geosci. 40 (2008), 233–248. | Zbl

[10] Mateu-Figueras G., Pawlowsky-Glahn V., Barceló-Vidal C.: Distributions on the simplex. In: Thió-Henestrosa, S., Martín-Fernández, J.A.: Compositional Data Analysis Workshop – CoDaWork’03, Proceedings, Universitat de Girona, 2003.

[11] Pawlowsky-Glahn V., Egozcue J. J.: Geometric approach to statistical analysis on the simplex. Stoch. Envir. Res. and Risk Ass. 15 (2001), 384–398. | Zbl

[13] Talašová J.: Fuzzy methods for multicriteria evaluation, decision making. : Publishing House of Palacký University, Olomouc. 2006 (in Czech).

[14] Weltje G. J.: Ternary sandstone composition and provenance: an evaluation of the ‘Dickinson model’. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.): Compositional data analysis in the geosciences: From theory to practice. Geological Society, London, Special Publications 264 (2006), 79–99.