Furi–Pera fixed point theorems in Banach algebras with applications
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 55-75 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is ${\mathcal D}$-Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is ${\mathcal D}$-Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
Classification : 46Hxx, 46J10, 47H09, 47H10, 47H30, 47J25, 54H25
Keywords: banach algebra; Furi–Pera condition; fixed point theorem; measure of noncompactness; integral equations
@article{AUPO_2008_47_1_a5,
     author = {Djebali, Sma{\"\i}l and Hammache, Karima},
     title = {Furi{\textendash}Pera fixed point theorems in {Banach} algebras with applications},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {55--75},
     year = {2008},
     volume = {47},
     number = {1},
     mrnumber = {2482717},
     zbl = {1181.47057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/}
}
TY  - JOUR
AU  - Djebali, Smaïl
AU  - Hammache, Karima
TI  - Furi–Pera fixed point theorems in Banach algebras with applications
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2008
SP  - 55
EP  - 75
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/
LA  - en
ID  - AUPO_2008_47_1_a5
ER  - 
%0 Journal Article
%A Djebali, Smaïl
%A Hammache, Karima
%T Furi–Pera fixed point theorems in Banach algebras with applications
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2008
%P 55-75
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/
%G en
%F AUPO_2008_47_1_a5
Djebali, Smaïl; Hammache, Karima. Furi–Pera fixed point theorems in Banach algebras with applications. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 55-75. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/

[1] Agarwal R. A., Meehan M., O’Regan D.: Fixed Point Theory, Applications. Cambridge Tracts in Mathematics, Vol. 141: Cambridge University Press. 2001. | MR

[2] Bainov D., Simeonov P.: Integral Inequalities, Applications. : Kluwer Academic Publishers. 1992. | MR

[3] Banas J., Goebel K.: Measure of Noncompactness in Banach Spaces. Math., Appli., Vol. 57: Marcel Dekker, New York. 1980. | MR

[4] Banas J., Knap Z.: Measure of noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 146 (1990), 353–362. | MR

[5] Boyd D. W., Wong J. S. W.: On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458–464. | MR | Zbl

[6] Burton T. A.: A fixed point theorem of Krasnozels’kĭi. Appl. Math. Lett. 11 (1998), 85–88. | MR

[7] Deimling K.: Nonlinear Functional Analysis. : Springer Verlag, Berlin–Tokyo. 1985. | MR

[8] Djebali S., Moussaoui T.: A class of second order BVPs on infinite intervals. Elec. Jour. Qual. Theo. Diff. Eq. 4 (2006), 1–19. | MR | Zbl

[9] Dhage B. C.: On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations. Jour. Math. Phys. Sci. 2, 5 (1988), 603–611. | MR | Zbl

[10] Dhage B. C.: On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett. 18 (2005), 273–280. | MR | Zbl

[11] Dhage B. C.: Some nonlinear alternatives in Banach algebras with applications I. Nonlinear Studies 12, 3 (2005), 271–281. | MR | Zbl

[12] Dhage B. C., Ntouyas S. K.: Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnozels’kĭi–Schaefer type. Nonlinear Studies 9, 3 (2002), 307–317. | MR

[13] Dhage B. C., O’Regan D.: A fixed point theorem in Banach algebras with applications to functional integral equations. Funct. Diff. Equ. 7, 3-4 (2000), 259–267. | MR | Zbl

[14] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ODE on noncompact intervals. Annales Polonici Mathematici 47 (1987), 331–346. | MR

[15] Krasnozels’kĭi M. A.: Positive Solutions of Operator Equations. : Noordhoff, Groningen. 1964.

[16] Krasnozels’kĭi M. A.: Integral Operators in Space of Summable Functions. : Noordhoff, Leyden. 1976.

[17] O’Regan D.: Fixed-point theory for the sum of two operators. Appl. Math. Lett. 9 (1996), 1–8. | Zbl

[18] Smart D. R.: Fixed point Theorems. : Cambridge University Press. 1974. | MR

[19] Zeidler E.: Nonlinear Functional Analysis, its Applications. Vol. I: Fixed Point Theorems. : Springer Verlag, New York. 1986. | MR