Keywords: banach algebra; Furi–Pera condition; fixed point theorem; measure of noncompactness; integral equations
@article{AUPO_2008_47_1_a5,
author = {Djebali, Sma{\"\i}l and Hammache, Karima},
title = {Furi{\textendash}Pera fixed point theorems in {Banach} algebras with applications},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {55--75},
year = {2008},
volume = {47},
number = {1},
mrnumber = {2482717},
zbl = {1181.47057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/}
}
TY - JOUR AU - Djebali, Smaïl AU - Hammache, Karima TI - Furi–Pera fixed point theorems in Banach algebras with applications JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2008 SP - 55 EP - 75 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/ LA - en ID - AUPO_2008_47_1_a5 ER -
%0 Journal Article %A Djebali, Smaïl %A Hammache, Karima %T Furi–Pera fixed point theorems in Banach algebras with applications %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2008 %P 55-75 %V 47 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/ %G en %F AUPO_2008_47_1_a5
Djebali, Smaïl; Hammache, Karima. Furi–Pera fixed point theorems in Banach algebras with applications. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 55-75. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a5/
[1] Agarwal R. A., Meehan M., O’Regan D.: Fixed Point Theory, Applications. Cambridge Tracts in Mathematics, Vol. 141: Cambridge University Press. 2001. | MR
[2] Bainov D., Simeonov P.: Integral Inequalities, Applications. : Kluwer Academic Publishers. 1992. | MR
[3] Banas J., Goebel K.: Measure of Noncompactness in Banach Spaces. Math., Appli., Vol. 57: Marcel Dekker, New York. 1980. | MR
[4] Banas J., Knap Z.: Measure of noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 146 (1990), 353–362. | MR
[5] Boyd D. W., Wong J. S. W.: On nonlinear contractions. Proc. Amer. Math. Soc. 20 (1969), 458–464. | MR | Zbl
[6] Burton T. A.: A fixed point theorem of Krasnozels’kĭi. Appl. Math. Lett. 11 (1998), 85–88. | MR
[7] Deimling K.: Nonlinear Functional Analysis. : Springer Verlag, Berlin–Tokyo. 1985. | MR
[8] Djebali S., Moussaoui T.: A class of second order BVPs on infinite intervals. Elec. Jour. Qual. Theo. Diff. Eq. 4 (2006), 1–19. | MR | Zbl
[9] Dhage B. C.: On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations. Jour. Math. Phys. Sci. 2, 5 (1988), 603–611. | MR | Zbl
[10] Dhage B. C.: On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett. 18 (2005), 273–280. | MR | Zbl
[11] Dhage B. C.: Some nonlinear alternatives in Banach algebras with applications I. Nonlinear Studies 12, 3 (2005), 271–281. | MR | Zbl
[12] Dhage B. C., Ntouyas S. K.: Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnozels’kĭi–Schaefer type. Nonlinear Studies 9, 3 (2002), 307–317. | MR
[13] Dhage B. C., O’Regan D.: A fixed point theorem in Banach algebras with applications to functional integral equations. Funct. Diff. Equ. 7, 3-4 (2000), 259–267. | MR | Zbl
[14] Furi M., Pera P.: A continuation method on locally convex spaces and applications to ODE on noncompact intervals. Annales Polonici Mathematici 47 (1987), 331–346. | MR
[15] Krasnozels’kĭi M. A.: Positive Solutions of Operator Equations. : Noordhoff, Groningen. 1964.
[16] Krasnozels’kĭi M. A.: Integral Operators in Space of Summable Functions. : Noordhoff, Leyden. 1976.
[17] O’Regan D.: Fixed-point theory for the sum of two operators. Appl. Math. Lett. 9 (1996), 1–8. | Zbl
[18] Smart D. R.: Fixed point Theorems. : Cambridge University Press. 1974. | MR
[19] Zeidler E.: Nonlinear Functional Analysis, its Applications. Vol. I: Fixed Point Theorems. : Springer Verlag, New York. 1986. | MR