Keywords: union-closed sets; Frankl’s conjecture; lattice; semimodularity; planar lattice
@article{AUPO_2008_47_1_a4,
author = {Cz\'edli, G\'abor and Schmidt, E. Tam\'as},
title = {Frankl{\textquoteright}s conjecture for large semimodular and planar semimodular lattices},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {47--53},
year = {2008},
volume = {47},
number = {1},
mrnumber = {2482716},
zbl = {1187.05002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a4/}
}
TY - JOUR AU - Czédli, Gábor AU - Schmidt, E. Tamás TI - Frankl’s conjecture for large semimodular and planar semimodular lattices JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2008 SP - 47 EP - 53 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a4/ LA - en ID - AUPO_2008_47_1_a4 ER -
%0 Journal Article %A Czédli, Gábor %A Schmidt, E. Tamás %T Frankl’s conjecture for large semimodular and planar semimodular lattices %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2008 %P 47-53 %V 47 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a4/ %G en %F AUPO_2008_47_1_a4
Czédli, Gábor; Schmidt, E. Tamás. Frankl’s conjecture for large semimodular and planar semimodular lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 47-53. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a4/
[1] Tetsuya, A: Excess of a lattice. Graphs and Combinatorics 18 (2002), 395–402. | MR | Zbl
[2] Tetsuya, A: Strong semimodular lattices and Frankl’s conjecture. Algebra Universalis 44 (2000), 379–382. | MR | Zbl
[3] Tetsuya A., Bumpei N.: Frankl’s conjecture is true for modular lattices, Graphs and Combinatorics. 14 (1998), 305–311. | MR
[4] Tetsuya A., Bumpei N.: Lower semimodular types of lattices: Frankl’s conjecture holds for lower quasi-semimodular lattices. Graphs Combin. 16, 1 (2000), 1–16. | MR | Zbl
[5] Burris S., Sankappanavar H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics, 78. Springer-Verlag, New York–Berlin, 1981; The Millennium Edition, http://www.math.uwaterloo.ca/$\sim $snburris/htdocs/ualg.html. | MR | Zbl
[6] Czédli G.: On averaging Frankl’s conjecture for large union-closed sets. Journal of Combinatorial Theory - Series A, to appear. | Zbl
[7] Czédli G., Schmidt E. T.: How to derive finite semimodular lattices from distributive lattices?. Acta Mathematica Hungarica, to appear. | MR | Zbl
[8] Czédli G., Maróti, M, Schmidt E. T.: On the scope of averaging for Frankl’s conjecture. Order, submitted. | Zbl
[9] Frankl P.: Extremal set systems. Handbook of combinatorics. Vol. 1, 2, 1293–1329, Elsevier, Amsterdam, 1995. | MR
[10] Weidong G.,Hongquan Y.: Note on the union-closed sets conjecture. Ars Combin. 49 (1998), 280–288. | MR | Zbl
[11] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag, Basel–Stuttgart. 1978, sec. edi. 1998. | MR
[12] Grätzer G., Knapp E.: A note on planar semimodular lattices. Algebra Universalis 58 (2008), 497-499. | MR | Zbl
[13] Herrmann C., Langsdorf R.: Frankl’s conjecture for lower semimodular lattices. http://www.mathematik.tu-darmstadt.de:8080/$\sim $herrmann/recherche/
[14] Poonen B.: Union-closed families. J. Combinatorial Theory A 59 (1992), 253–268. | MR | Zbl
[15] Reinhold J.: Frankl’s conjecture is true for lower semimodular lattices. Graphs and Combinatorics 16 (2000), 115–116. | MR | Zbl
[16] Roberts I.: Tech. Rep. No. 2/92. : School Math. Stat., Curtin Univ. Tech., Perth. 1992.
[17] Stanley R. P.: Enumerative Combinatorics, Vol. I. : Wadsworth & Brooks/Coole, Belmont, CA. 1986. | MR