Keywords: basic algebra; monadic basic algebra; existential quantifier; universal quantifier; lattice with section antitone involution
@article{AUPO_2008_47_1_a2,
author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav},
title = {Monadic basic algebras},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {27--36},
year = {2008},
volume = {47},
number = {1},
mrnumber = {2482714},
zbl = {1172.06006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a2/}
}
Chajda, Ivan; Kolařík, Miroslav. Monadic basic algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a2/
[1] Chajda I., Emanovský P.: Bounded lattices with antitone involutions and properties of MV-algebras. Discuss. Math., Gen. Algebra Appl. 24 (2004), 31–42. | MR | Zbl
[2] Chajda I., Halaš R.: A basic algebra is an MV-algebra if and only if it is a BCC-algebra. Intern. J. Theor. Phys., to appear. | MR | Zbl
[3] Chajda I., Halaš R., Kühr J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71 (2005), 19–33. | MR | Zbl
[4] Chajda I., Halaš R., Kühr J.: Many-valued quantum algebras. Algebra Universalis, to appear. | MR | Zbl
[5] Chajda I., Halaš R., Kühr J.: Semilattice Structures. : Heldermann Verlag, Lemgo, Germany. 2007. | MR
[6] Chajda I., Kolařík M.: Independence of axiom system of basic algebras. Soft Computing, to appear, DOI 10.1007/s00500-008-0291-2. | Zbl
[7] Di Nola A., Grigolia R.: On monadic MV-algebras. Ann. Pure Appl. Logic 128 (2006), 212–218. | MR | Zbl
[8] Rachůnek J., Švrček F.: Monadic bounded commutative residuated $\ell $-monoids. Order, to appear. | MR | Zbl
[9] Rutledge J. D.: On the definition of an infinitely-many-valued predicate calculus. J. Symbolic Logic 25 (1960), 212–216. | MR | Zbl