Further results on global stability of solutions of certain third-order nonlinear differential equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 121-127 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions are established for the global stability of solutions of certain third-order nonlinear differential equations. Our result improves on Tunc’s [10].
Sufficient conditions are established for the global stability of solutions of certain third-order nonlinear differential equations. Our result improves on Tunc’s [10].
Classification : 34D23
Keywords: nonlinear differential equation; trivial solution; global stability; Lyapunov’s method
@article{AUPO_2008_47_1_a10,
     author = {Omeike, Mathew Omonigho},
     title = {Further results on global stability of solutions of certain third-order nonlinear differential equations},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {121--127},
     year = {2008},
     volume = {47},
     number = {1},
     mrnumber = {2482722},
     zbl = {1177.34072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/}
}
TY  - JOUR
AU  - Omeike, Mathew Omonigho
TI  - Further results on global stability of solutions of certain third-order nonlinear differential equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2008
SP  - 121
EP  - 127
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/
LA  - en
ID  - AUPO_2008_47_1_a10
ER  - 
%0 Journal Article
%A Omeike, Mathew Omonigho
%T Further results on global stability of solutions of certain third-order nonlinear differential equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2008
%P 121-127
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/
%G en
%F AUPO_2008_47_1_a10
Omeike, Mathew Omonigho. Further results on global stability of solutions of certain third-order nonlinear differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/

[1] Barbashin E. A.: Lyapunov Functions. : Nauka, Moscow. 1970.

[2] Ezeilo J. O. C.: On the stability of solutions of certain differential equations of the third order. Quart. J. Math. Oxford Ser. 11 (1960), 64–69. | MR | Zbl

[3] Goldwyn M., Narendra S.: Stability of Certain Nonlinear Differential Equation Using the Second Method of Lyapunov. : Craft Lab. Harvard Univ., Cambridge, MA. 1963, pp. 1–14.

[4] Kraovkii N. N.: Stability of Motion. : Stanford University Press, Stanford, CA. 1963.

[5] Ogurtsov A. I.: On the stability of the solutions of some nonlinear differential equations of the third and forth order. Ivz. Vyssh. Uchebn. Zaved. Mat. 10 (1959), 200–209.

[6] Qin Y., Wan M., Wang L.: Theory, Applications of Stability of Motions. : Academic Press, Beijing. 1981. | MR

[7] Qian C.: On global stability of third-order nonlinear differential equations. Nonlinear Analysis 42 (2000), 651–661. | MR | Zbl

[8] Qian C.: Asymptotic behavior of a third-order nonlinear differential equation. J. Math. Anal. Appl. 284 (2003), 191–205. | MR | Zbl

[9] Omeike M. O.: Further results on global stability of third-order nonlinear differential equations. Nonlinear Analysis 67 (2007) 3394–3400. | MR | Zbl

[10] Tunc C.: Global stability of solutions of certain third-order nonlinear differential equations. Panamer. Math. J. 14, 4 (2004), 31–35. | MR | Zbl

[11] Tunc C.: On the asymptotic behavior of solutions of certain third-order nonlinear differential equations. J. Appl. Math. Stoch. Anal. 1 (2005), 29–35. | MR | Zbl

[12] Reissig, R, Sansone G., Conti R.: Nonlinear Differential Equations of Higher Order. : Noordhoff Inter. Pub., Leyden. 1974. | MR

[13] Shimanov S. N.: On the stability of the solution of a nonlinear equation of the third order. Prikl. Mat. Mekh. 17 (1953), 369–372. | MR

[14] Wang L., Wang M.: Analysis of construction of Lyapunov functions of third-order nonlinear systems. Acta Math. Appl. Sin. 6 (1983), 309–323. | MR