Keywords: nonlinear differential equation; trivial solution; global stability; Lyapunov’s method
@article{AUPO_2008_47_1_a10,
author = {Omeike, Mathew Omonigho},
title = {Further results on global stability of solutions of certain third-order nonlinear differential equations},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {121--127},
year = {2008},
volume = {47},
number = {1},
mrnumber = {2482722},
zbl = {1177.34072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/}
}
TY - JOUR AU - Omeike, Mathew Omonigho TI - Further results on global stability of solutions of certain third-order nonlinear differential equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2008 SP - 121 EP - 127 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/ LA - en ID - AUPO_2008_47_1_a10 ER -
%0 Journal Article %A Omeike, Mathew Omonigho %T Further results on global stability of solutions of certain third-order nonlinear differential equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2008 %P 121-127 %V 47 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/ %G en %F AUPO_2008_47_1_a10
Omeike, Mathew Omonigho. Further results on global stability of solutions of certain third-order nonlinear differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a10/
[1] Barbashin E. A.: Lyapunov Functions. : Nauka, Moscow. 1970.
[2] Ezeilo J. O. C.: On the stability of solutions of certain differential equations of the third order. Quart. J. Math. Oxford Ser. 11 (1960), 64–69. | MR | Zbl
[3] Goldwyn M., Narendra S.: Stability of Certain Nonlinear Differential Equation Using the Second Method of Lyapunov. : Craft Lab. Harvard Univ., Cambridge, MA. 1963, pp. 1–14.
[4] Kraovkii N. N.: Stability of Motion. : Stanford University Press, Stanford, CA. 1963.
[5] Ogurtsov A. I.: On the stability of the solutions of some nonlinear differential equations of the third and forth order. Ivz. Vyssh. Uchebn. Zaved. Mat. 10 (1959), 200–209.
[6] Qin Y., Wan M., Wang L.: Theory, Applications of Stability of Motions. : Academic Press, Beijing. 1981. | MR
[7] Qian C.: On global stability of third-order nonlinear differential equations. Nonlinear Analysis 42 (2000), 651–661. | MR | Zbl
[8] Qian C.: Asymptotic behavior of a third-order nonlinear differential equation. J. Math. Anal. Appl. 284 (2003), 191–205. | MR | Zbl
[9] Omeike M. O.: Further results on global stability of third-order nonlinear differential equations. Nonlinear Analysis 67 (2007) 3394–3400. | MR | Zbl
[10] Tunc C.: Global stability of solutions of certain third-order nonlinear differential equations. Panamer. Math. J. 14, 4 (2004), 31–35. | MR | Zbl
[11] Tunc C.: On the asymptotic behavior of solutions of certain third-order nonlinear differential equations. J. Appl. Math. Stoch. Anal. 1 (2005), 29–35. | MR | Zbl
[12] Reissig, R, Sansone G., Conti R.: Nonlinear Differential Equations of Higher Order. : Noordhoff Inter. Pub., Leyden. 1974. | MR
[13] Shimanov S. N.: On the stability of the solution of a nonlinear equation of the third order. Prikl. Mat. Mekh. 17 (1953), 369–372. | MR
[14] Wang L., Wang M.: Analysis of construction of Lyapunov functions of third-order nonlinear systems. Acta Math. Appl. Sin. 6 (1983), 309–323. | MR