Keywords: linear regression model; variance components; insensitivity region
@article{AUPO_2008_47_1_a0,
author = {Boh\'a\v{c}ov\'a, Hana},
title = {Insensitivity region for variance components in general linear model},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {7--22},
year = {2008},
volume = {47},
number = {1},
mrnumber = {2482712},
zbl = {1165.62322},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a0/}
}
TY - JOUR AU - Boháčová, Hana TI - Insensitivity region for variance components in general linear model JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2008 SP - 7 EP - 22 VL - 47 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a0/ LA - en ID - AUPO_2008_47_1_a0 ER -
%0 Journal Article %A Boháčová, Hana %T Insensitivity region for variance components in general linear model %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2008 %P 7-22 %V 47 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a0/ %G en %F AUPO_2008_47_1_a0
Boháčová, Hana. Insensitivity region for variance components in general linear model. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/AUPO_2008_47_1_a0/
[1] Boháčová H., Heckenbergerová J.: Insensitivity regions for fixed effects parameters in mixed linear model with type I constraints and calculation problems linked with them. In: Forum Statisticum Slovacum 6/2007, ISSN 1336-7420, (in Czech).
[2] Ebel S., Alert D., Schaefer U.: Calibration in TLC/HPTLC using the Michaelis-Menten function. Chromatographia 1/1984.
[3] Humak K. M. S.: Statistischen Methoden der Modellbildung Band I, Statistische Inferenz für lineare Parameter. : Akademie–Verlag, Berlin. 1977. | MR
[4] Kubáček L., Kubáčková L.: Statistika a metrologie. : Vyd. University Palackáho, Olomouc. 2000.
[5] Rao C. R., Kleffe J.: Estimation of Variance Components, Application. : North-Holland, Amsterdam–New York–Oxford–Tokyo. 1988. | MR
[6] Rényi A.: Probability theory. : Akadémiai Kiadó, Budapest. 1970.