Bol-loops of order $3\cdot 2^n$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article we construct proper Bol-loops of order $3\cdot 2^n$ using a generalisation of the semidirect product of groups defined by Birkenmeier and Xiao. Moreover we classify the obtained loops up to isomorphism.
In this article we construct proper Bol-loops of order $3\cdot 2^n$ using a generalisation of the semidirect product of groups defined by Birkenmeier and Xiao. Moreover we classify the obtained loops up to isomorphism.
Classification : 20N05
Keywords: bol-loop; loop; group; semidirect product
@article{AUPO_2007_46_1_a8,
     author = {Wagner, Daniel and Wopperer, Stefan},
     title = {Bol-loops of order $3\cdot 2^n$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {85--88},
     year = {2007},
     volume = {46},
     number = {1},
     mrnumber = {2387496},
     zbl = {1143.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/}
}
TY  - JOUR
AU  - Wagner, Daniel
AU  - Wopperer, Stefan
TI  - Bol-loops of order $3\cdot 2^n$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2007
SP  - 85
EP  - 88
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/
LA  - en
ID  - AUPO_2007_46_1_a8
ER  - 
%0 Journal Article
%A Wagner, Daniel
%A Wopperer, Stefan
%T Bol-loops of order $3\cdot 2^n$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2007
%P 85-88
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/
%G en
%F AUPO_2007_46_1_a8
Wagner, Daniel; Wopperer, Stefan. Bol-loops of order $3\cdot 2^n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/

[1] Kiguradze I. T.: On Some Singular Boundary Value Problems for Ordinary Differential Equations. : Tbilisi Univ. Press, Tbilisi. 1975 (in Russian). | MR

[2] Kiguradze I. T., Shekhter B. L.: Singular boundary value problems for second order ordinary differential equations. Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Nov. Dost. 30 (1987), 105–201 (in Russian), translated in J. Soviet Math. 43 (1988), 2340–2417. | MR | Zbl

[3] O’Regan D.: Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap. Nonlinear Anal. 47 (2001), 1163–1174. | MR | Zbl

[4] O’Regan D.: Theory of Singular Boundary Value Problems. : World Scientific, Singapore. 1994. | MR

[5] Rachůnková I.: Singular mixed boundary value problem. J. Math. Anal. Appl. 320 (2006), 611–618. | MR | Zbl

[6] Rachůnková I., Staněk S., Tvrdý M.: Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations, Ed. by A. Cañada, P. Drábek, A. Fonda, Vol. 3., pp. 607–723, Elsevier, 2006.

[7] Wang M., Cabada A., Nieto J. J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Ann. Polon. Math. 58, 3 (1993), 221–235. | MR | Zbl