@article{AUPO_2007_46_1_a8,
author = {Wagner, Daniel and Wopperer, Stefan},
title = {Bol-loops of order $3\cdot 2^n$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {85--88},
year = {2007},
volume = {46},
number = {1},
mrnumber = {2387496},
zbl = {1143.20046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/}
}
TY - JOUR AU - Wagner, Daniel AU - Wopperer, Stefan TI - Bol-loops of order $3\cdot 2^n$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2007 SP - 85 EP - 88 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/ LA - en ID - AUPO_2007_46_1_a8 ER -
Wagner, Daniel; Wopperer, Stefan. Bol-loops of order $3\cdot 2^n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/
[1] Kiguradze I. T.: On Some Singular Boundary Value Problems for Ordinary Differential Equations. : Tbilisi Univ. Press, Tbilisi. 1975 (in Russian). | MR
[2] Kiguradze I. T., Shekhter B. L.: Singular boundary value problems for second order ordinary differential equations. Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Nov. Dost. 30 (1987), 105–201 (in Russian), translated in J. Soviet Math. 43 (1988), 2340–2417. | MR | Zbl
[3] O’Regan D.: Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap. Nonlinear Anal. 47 (2001), 1163–1174. | MR | Zbl
[4] O’Regan D.: Theory of Singular Boundary Value Problems. : World Scientific, Singapore. 1994. | MR
[5] Rachůnková I.: Singular mixed boundary value problem. J. Math. Anal. Appl. 320 (2006), 611–618. | MR | Zbl
[6] Rachůnková I., Staněk S., Tvrdý M.: Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations. Handbook of Differential Equations. Ordinary Differential Equations, Ed. by A. Cañada, P. Drábek, A. Fonda, Vol. 3., pp. 607–723, Elsevier, 2006.
[7] Wang M., Cabada A., Nieto J. J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Ann. Polon. Math. 58, 3 (1993), 221–235. | MR | Zbl