Bol-loops of order $3\cdot 2^n$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this article we construct proper Bol-loops of order $3\cdot 2^n$ using a generalisation of the semidirect product of groups defined by Birkenmeier and Xiao. Moreover we classify the obtained loops up to isomorphism.
In this article we construct proper Bol-loops of order $3\cdot 2^n$ using a generalisation of the semidirect product of groups defined by Birkenmeier and Xiao. Moreover we classify the obtained loops up to isomorphism.
@article{AUPO_2007_46_1_a8,
author = {Wagner, Daniel and Wopperer, Stefan},
title = {Bol-loops of order $3\cdot 2^n$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {85--88},
year = {2007},
volume = {46},
number = {1},
mrnumber = {2387496},
zbl = {1143.20046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/}
}
TY - JOUR AU - Wagner, Daniel AU - Wopperer, Stefan TI - Bol-loops of order $3\cdot 2^n$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2007 SP - 85 EP - 88 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/ LA - en ID - AUPO_2007_46_1_a8 ER -
Wagner, Daniel; Wopperer, Stefan. Bol-loops of order $3\cdot 2^n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a8/