Singular nonlinear problem for ordinary differential equation of the second order
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 75-84
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The paper deals with the singular nonlinear problem \[ u^{\prime \prime }(t) + f(t,u(t),u^{\prime }(t)) = 0,\quad u(0) = 0,\quad u^{\prime }(T) = \psi (u(T)), \] where $f \in \mathop {\mathit{Car}}((0,T)\times D)$, $D = (0,\infty )\times $. We prove the existence of a solution to this problem which is positive on $(0,T]$ under the assumption that the function $f(t,x,y)$ is nonnegative and can have time singularities at $t = 0$, $t = T$ and space singularity at $x = 0$. The proof is based on the Schauder fixed point theorem and on the method of a priori estimates.
The paper deals with the singular nonlinear problem \[ u^{\prime \prime }(t) + f(t,u(t),u^{\prime }(t)) = 0,\quad u(0) = 0,\quad u^{\prime }(T) = \psi (u(T)), \] where $f \in \mathop {\mathit{Car}}((0,T)\times D)$, $D = (0,\infty )\times $. We prove the existence of a solution to this problem which is positive on $(0,T]$ under the assumption that the function $f(t,x,y)$ is nonnegative and can have time singularities at $t = 0$, $t = T$ and space singularity at $x = 0$. The proof is based on the Schauder fixed point theorem and on the method of a priori estimates.
Classification :
34B15, 34B16, 34B18
Keywords: singular ordinary differential equation of the second order; lower and upper functions; nonlinear boundary conditions; time singularities; phase singularity
Keywords: singular ordinary differential equation of the second order; lower and upper functions; nonlinear boundary conditions; time singularities; phase singularity
@article{AUPO_2007_46_1_a7,
author = {Rach\r{u}nkov\'a, Irena and Tome\v{c}ek, Jan},
title = {Singular nonlinear problem for ordinary differential equation of the second order},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {75--84},
year = {2007},
volume = {46},
number = {1},
mrnumber = {2387495},
zbl = {1147.34012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a7/}
}
TY - JOUR AU - Rachůnková, Irena AU - Tomeček, Jan TI - Singular nonlinear problem for ordinary differential equation of the second order JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2007 SP - 75 EP - 84 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a7/ LA - en ID - AUPO_2007_46_1_a7 ER -
%0 Journal Article %A Rachůnková, Irena %A Tomeček, Jan %T Singular nonlinear problem for ordinary differential equation of the second order %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2007 %P 75-84 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a7/ %G en %F AUPO_2007_46_1_a7
Rachůnková, Irena; Tomeček, Jan. Singular nonlinear problem for ordinary differential equation of the second order. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a7/