Keywords: regular linear regression model; nuisance parameters; BLUE; constraints
@article{AUPO_2007_46_1_a5,
author = {Kunderov\'a, Pavla},
title = {Eliminating transformations for nuisance parameters in linear regression models with type {I} constraints},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {51--64},
year = {2007},
volume = {46},
number = {1},
mrnumber = {2387493},
zbl = {1139.62035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a5/}
}
TY - JOUR AU - Kunderová, Pavla TI - Eliminating transformations for nuisance parameters in linear regression models with type I constraints JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2007 SP - 51 EP - 64 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a5/ LA - en ID - AUPO_2007_46_1_a5 ER -
%0 Journal Article %A Kunderová, Pavla %T Eliminating transformations for nuisance parameters in linear regression models with type I constraints %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2007 %P 51-64 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a5/ %G en %F AUPO_2007_46_1_a5
Kunderová, Pavla. Eliminating transformations for nuisance parameters in linear regression models with type I constraints. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a5/
[1] Anderson T. W.: Introduction to Multivariate Statistical Analysis. : J. Wiley, New York. 1958. | MR
[2] Kubáček L., Kubáčková L., Volaufová J.: Statistical Models with Linear Structures. : Veda (Publishing House of Slovak Academy of Sciences), Bratislava. 1995.
[3] Lešanská E.: Optimization of the size of nonsensitiveness regions. Appl. Math. 47 (2002), 9–23. | MR
[4] Rao C. R.: Linear Statistical Inference, Its Applications. : J. Wiley, New York. 1973 (second edition). | MR
[5] Rao C. R., Mitra S. K.: Genaralized Inverse of Matrices, its Applications. : John Wiley & Sons, New York– London–Sydney–Toronto. 1971. | MR
[6] Rao C. R., Kleffe J.: Estimation of Variance Components, Applications. : North–Holland, Amsterdam–New York–Oxford–Tokyo. 1988. | MR