Ideals, congruences and annihilators on nearlattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 25-33 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or $0$-distributivity of nearlattices by means of certain properties of annihilators.
By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or $0$-distributivity of nearlattices by means of certain properties of annihilators.
Classification : 06A12, 06C99, 06D99
Keywords: nearlattice; semilattice; ideal; congruence; distributivity; modularity; $0$-distributivity; annihilator
@article{AUPO_2007_46_1_a2,
     author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav},
     title = {Ideals, congruences and annihilators on nearlattices},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {25--33},
     year = {2007},
     volume = {46},
     number = {1},
     mrnumber = {2387490},
     zbl = {1147.06002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a2/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Kolařík, Miroslav
TI  - Ideals, congruences and annihilators on nearlattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2007
SP  - 25
EP  - 33
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a2/
LA  - en
ID  - AUPO_2007_46_1_a2
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Kolařík, Miroslav
%T Ideals, congruences and annihilators on nearlattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2007
%P 25-33
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a2/
%G en
%F AUPO_2007_46_1_a2
Chajda, Ivan; Kolařík, Miroslav. Ideals, congruences and annihilators on nearlattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 25-33. http://geodesic.mathdoc.fr/item/AUPO_2007_46_1_a2/

[1] Abbott J. C.: Semi-boolean algebra. Mat. Vestnik 4 (1967), 177–198. | MR | Zbl

[2] Beazer R.: Hierarchies of distributive lattices satisfying annihilator conditions. J. London Math. Soc. 11 (1975), 216–222. | MR | Zbl

[3] Chajda I., Kolařík M.: A decomposition of homomorphic images of nearlattices. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 45 (2006), 43–52. | MR | Zbl

[4] Chajda I., Kolařík M.: Nearlattices. Discrete Math., to appear. | MR | Zbl

[5] Cornish W. H.: The free implicative BCK-extension of a distributive nearlattice. Math. Japonica 27, 3 (1982), 279–286. | MR | Zbl

[6] Cornish W. H., Noor A. S. A.: Standard elements in a nearlattice. Bull. Austral. Math. Soc. 26, 2 (1982), 185–213. | MR | Zbl

[7] Davey B.: Some annihilator conditions on distributive lattices. Algebra Universalis 4 (1974), 316–322. | MR | Zbl

[8] Davey B., Nieminen J.: Annihilators in modular lattices. Algebra Universalis 22 (1986), 154–158. | MR | Zbl

[9] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag. Basel, 1978. | MR

[10] Halaš R.: Subdirectly irreducible distributive nearlattices. Math. Notes 7, 2 (2006), 141–146. | MR | Zbl

[11] Hickman R.: Join algebras. Communications in Algebra 8 (1980), 1653–1685. | MR | Zbl

[12] Mandelker M.: Relative annihilators in lattices. Duke Math. J. 40 (1970), 377–386. | MR | Zbl

[13] Nieminen J.: The Jordan–Hölder chain condition and annihilators in finite lattices. Tsukuba J. Math. 14 (1990), 405–411. | MR | Zbl

[14] Noor A. S. A., Cornish W. H.: Multipliers on a nearlattices. Commentationes Mathematicae Universitatis Carolinae (1986), 815–827. | MR

[15] Scholander M.: Trees, lattices, order and betweenness. Proc. Amer. Math. Soc. 3 (1952), 369–381. | MR

[16] Scholander M.: Medians and betweenness. Proc. Amer. Math. Soc. 5 (1954), 801–807. | MR

[17] Scholander M.: Medians, lattices and trees. Proc. Amer. Math. Soc. 5 (1954), 808–812. | MR