Dually residuated $\ell$-monoids having no non-trivial convex subalgebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 103-108 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit{DR}\ell $-monoids) that have no non-trivial convex subalgebras.
In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit{DR}\ell $-monoids) that have no non-trivial convex subalgebras.
Classification : 03G25, 06F05
Keywords: $\mathit{DR}\ell $-monoid; $\mathit{GPMV}$-algebra; Archimedean property
@article{AUPO_2006_45_1_a9,
     author = {K\"uhr, Jan},
     title = {Dually residuated $\ell$-monoids having no non-trivial convex subalgebras},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {103--108},
     year = {2006},
     volume = {45},
     number = {1},
     mrnumber = {2321302},
     zbl = {1125.06012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/}
}
TY  - JOUR
AU  - Kühr, Jan
TI  - Dually residuated $\ell$-monoids having no non-trivial convex subalgebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2006
SP  - 103
EP  - 108
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/
LA  - en
ID  - AUPO_2006_45_1_a9
ER  - 
%0 Journal Article
%A Kühr, Jan
%T Dually residuated $\ell$-monoids having no non-trivial convex subalgebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2006
%P 103-108
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/
%G en
%F AUPO_2006_45_1_a9
Kühr, Jan. Dually residuated $\ell$-monoids having no non-trivial convex subalgebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 103-108. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/

[1] Anderson M., Feil T.: Lattice-Ordered Groups (An Introduction). : D. Reidel, Dordrecht. 1988. | MR

[2] Galatos N., Tsinakis C.: Generalized MV-algebras. J. Algebra 283 (2005), 254–291. | MR | Zbl

[3] Georgescu G., Leuştean L., Preoteasa V.: Pseudo-hoops. J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. | MR | Zbl

[4] Glass A. M. W.: Partially Ordered Groups. : World Scientific, Singapore. 1999. | MR

[5] Jipsen P., Tsinakis C.: A survey of residuated lattices. In: Ordered Algebraic Structures (Martinez, J., ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. | MR | Zbl

[6] Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids. : Ph.D. thesis, Palacký University, Olomouc. 1996.

[7] Kühr J.: Ideals of noncommutative $DR\ell $-monoids. Czechoslovak Math. J. 55 (2005), 97–111. | MR

[8] Kühr J.: On a generalization of pseudo MV-algebras. J. Mult.-Val. Log. Soft Comput. (to appear). | MR

[9] Kühr J.: Generalizations of pseudo MV-algebras and generalized pseudo effect algebras. Submitted. | Zbl

[10] Swamy K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | MR | Zbl