Keywords: $\mathit{DR}\ell $-monoid; $\mathit{GPMV}$-algebra; Archimedean property
@article{AUPO_2006_45_1_a9,
author = {K\"uhr, Jan},
title = {Dually residuated $\ell$-monoids having no non-trivial convex subalgebras},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {103--108},
year = {2006},
volume = {45},
number = {1},
mrnumber = {2321302},
zbl = {1125.06012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/}
}
TY - JOUR AU - Kühr, Jan TI - Dually residuated $\ell$-monoids having no non-trivial convex subalgebras JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2006 SP - 103 EP - 108 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/ LA - en ID - AUPO_2006_45_1_a9 ER -
%0 Journal Article %A Kühr, Jan %T Dually residuated $\ell$-monoids having no non-trivial convex subalgebras %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2006 %P 103-108 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/ %G en %F AUPO_2006_45_1_a9
Kühr, Jan. Dually residuated $\ell$-monoids having no non-trivial convex subalgebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 103-108. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a9/
[1] Anderson M., Feil T.: Lattice-Ordered Groups (An Introduction). : D. Reidel, Dordrecht. 1988. | MR
[2] Galatos N., Tsinakis C.: Generalized MV-algebras. J. Algebra 283 (2005), 254–291. | MR | Zbl
[3] Georgescu G., Leuştean L., Preoteasa V.: Pseudo-hoops. J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. | MR | Zbl
[4] Glass A. M. W.: Partially Ordered Groups. : World Scientific, Singapore. 1999. | MR
[5] Jipsen P., Tsinakis C.: A survey of residuated lattices. In: Ordered Algebraic Structures (Martinez, J., ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. | MR | Zbl
[6] Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids. : Ph.D. thesis, Palacký University, Olomouc. 1996.
[7] Kühr J.: Ideals of noncommutative $DR\ell $-monoids. Czechoslovak Math. J. 55 (2005), 97–111. | MR
[8] Kühr J.: On a generalization of pseudo MV-algebras. J. Mult.-Val. Log. Soft Comput. (to appear). | MR
[9] Kühr J.: Generalizations of pseudo MV-algebras and generalized pseudo effect algebras. Submitted. | Zbl
[10] Swamy K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | MR | Zbl