Some stability theorems for some iteration processes
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 81-88 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we obtain some stability results for Picard and Mann iteration processes in metric space and normed linear space respectively, using two different contractive definitions which are more general than those of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].\par Our results are generalizations of some results of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].
In this paper, we obtain some stability results for Picard and Mann iteration processes in metric space and normed linear space respectively, using two different contractive definitions which are more general than those of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].\par Our results are generalizations of some results of Harder and Hicks [4], Rhoades [10, 11], Osilike [8], Osilike and Udomene [9], Berinde [1, 2], Imoru and Olatinwo [5] and Imoru et al [6].
Classification : 47H06, 47H09, 47H10, 47J25, 54H25
Keywords: stability results; Picard and Mann iteration processes
@article{AUPO_2006_45_1_a7,
     author = {Imoru, C. O. and Olatinwo, M. O.},
     title = {Some stability theorems for some iteration processes},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {81--88},
     year = {2006},
     volume = {45},
     number = {1},
     mrnumber = {2321300},
     zbl = {1138.47046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a7/}
}
TY  - JOUR
AU  - Imoru, C. O.
AU  - Olatinwo, M. O.
TI  - Some stability theorems for some iteration processes
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2006
SP  - 81
EP  - 88
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a7/
LA  - en
ID  - AUPO_2006_45_1_a7
ER  - 
%0 Journal Article
%A Imoru, C. O.
%A Olatinwo, M. O.
%T Some stability theorems for some iteration processes
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2006
%P 81-88
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a7/
%G en
%F AUPO_2006_45_1_a7
Imoru, C. O.; Olatinwo, M. O. Some stability theorems for some iteration processes. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 81-88. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a7/

[1] Berinde V.: On the Stability of Some Fixed Point Procedures. Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica–Informatica 18, 1 (2002), 7–14. | MR | Zbl

[2] Berinde V.: Iterative Approximation of Fixed Points. Editura Efemeride (2002). | MR | Zbl

[3] Berinde V.: A priori and A posteriori Error Estimates for a class of $\varphi $-contractions. Bulletins for Applied & Computing Math. (1999), 183–192.

[4] Harder A. M., Hicks T. L.: Stability Results for Fixed Point Iteration Procedures. Math. Japonica 33, 5 (1988), 693–706. | MR | Zbl

[5] Imoru C. O., Olatinwo M. O.: On the Stability of Picard and Mann Iteration Processes. Carpathian J. Math. 19, 2 (2003), 155–160. | MR | Zbl

[6] Imoru C. O., Olatinwo M. O., Owojori O. O.: On the Stability Results for Picard and Mann Iteration Procedures. J. Appl. Funct. Diff. Eqns. 1, 1 (2006), 71–80. | MR

[7] Jachymski J. R.: An Extension of A. Ostrowski’s Theorem On the Round-off Stability of Iterations. Aequationes Math. 53 (1997), 242–253. | MR | Zbl

[8] Osilike M. O.: Some Stability Results for Fixed Point Iteration Procedures. J. Nigerian Math. Soc. 14/15 (1995), 17–29. | MR

[9] Osilike M. O., Udomene A.: Short Proofs of Stability Results for Fixed Point Iteration Procedures for a Class of Contractive-type Mappings. Indian J. Pure Appl. Math. 30, 2 (1999), 1229–1234. | MR | Zbl

[10] Rhoades B. E.: Fixed Point Theorems and Stability Results for Fixed Point Iteration Procedures. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. | MR | Zbl

[11] Rhoades B. E.: Fixed Point Theorems and Stability Results for Fixed Point Iteration Procedures II. Indian J. Pure Appl. Math. 24, 11 (1993), 691–703. | MR | Zbl

[12] Rhoades B. E.: Some Fixed Point Iteration Procedures. Internat. J. Math. and Math. Sci. 14, 1 (1991), 1–16. | MR | Zbl

[13] Zeidler E.: Nonlinear Functional Analysis, its Applications, Fixed-Point Theorems I. : Springer-Verlag, New York. 1986. | MR